Chemical Peels

Policy Number: 8.01.16 Last Review: 11/2016

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for Chemical Peels when it is determined to be medically necessary because the criteria shown below are met.

Note: This is a procedure that may be excluded in some contracts. Verify benefits prior to review for Medical Necessity.

When Policy Topic is covered
Dermal chemical peels used to treat patients with numerous (>10) actinic keratoses or other premalignant skin lesions, such that treatment of the individual lesions becomes impractical, may be considered medically necessary.

Epidermal chemical peels used to treat patients with active acne that has failed a trial of topical and/or oral antibiotic acne therapy are considered medically necessary. In this setting, superficial chemical peels with 40% to 70% alpha hydroxy acids are used as a comedolytic therapy. (Alpha hydroxy acids can also be used in lower concentrations [8%] without the supervision of a physician.)

When Policy Topic is not covered
Epidermal chemical peels used to treat photoaged skin, wrinkles, or acne scarring or dermal peels used to treat end-state acne scarring are considered cosmetic.

Considerations
Requests for all chemical peels should be carefully evaluated to determine whether their rationale is primarily cosmetic. Epidermal peels would only be considered medically necessary in patients with active acne who have failed other therapy. Dermal peels would be considered medically necessary only in patients with multiple actinic keratoses.

Description of Procedure or Service

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions of interest are:</th>
<th>Comparators of interest are:</th>
<th>Relevant outcomes include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients/individuals with:</td>
<td>Interventions</td>
<td>Comparators</td>
<td>Treatment-related</td>
</tr>
<tr>
<td>• Actinic keratosis or other</td>
<td>Dermal or</td>
<td>• No intervention</td>
<td></td>
</tr>
<tr>
<td>premalignant skin lesions,</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

A chemical peel refers to a controlled removal of varying layers of the skin with use of a chemical agent. The most common use for chemical peeling is as a treatment of photoaged skin. However, chemical peeling has also been used as a treatment for other conditions, including actinic keratoses, active acne, and acne scarring.

At the time of policy creation, review articles and clinical opinion supported the use of chemical peels for treating multiple actinic keratoses and as second-line treatment of active acne. More recent clinical input, obtained in 2010, continues to support the policy statements. In 2014, the first placebo-controlled randomized trial evaluating chemical peels for active acne was published and this trial found significantly better outcomes after treatment with a 40% glycolic acid peel compared with placebo treatment. The available evidence is insufficient to determine that chemical peels improve net health outcomes for patients with photoaged skin or acne-related scarring.

Background

Chemical peels involve a controlled partial-thickness removal of the epidermis and the outer dermis. When skin is regenerated, a 2- to 3-mm band of dense, compact collagen is formed between the epidermis and the damaged layers of the dermis, resulting in ablation of fine wrinkles and a reduction in pigmentation. These changes can be long-term, lasting 15 to 20 years and may be permanent in some patients. Potential local complications include scarring, infection, hypopigmentation, hyperpigmentation, activation of herpes simplex, and toxic shock syndrome.

Chemical peels are often categorized according to the depth of the peel: categories include superficial, medium-depth, and deep chemical peels. The precise depth of the peel depends on the concentration of the agent used, duration of the application, and the number of applications. Possible indications for each type of peel and common chemicals used, as described in 2005 by Cummings et al and others, is as follows.

Superficial peels (epidermal peels) affect the epidermis and the interface of the dermis-epidermis. This depth is considered appropriate for treating mild photaging, melasma, comedonal acne, and postinflammatory erythema. Common chemical agents used for superficial peels include low concentrations of glycolic acid, 10% to 20% trichloroacetic acid (TCA), Jessner solution (a mixture of resorcinol, salicylic acid, lactic acid, and ethanol), tretinoin, and salicylic acid. As part of the treatment process, superficial peels generally cause mild erythema and desquamation, and healing time ranges from 1 to 4 days, depending on the strength of the chemical agent. With superficial peels, patients often undergo multiple sessions, generally a total of 6 to 8 peels performed weekly or biweekly.
Medium-depth peels (dermal peels) extend into the epidermis to the papillary dermis. These are used for moderate photoaging, actinic keratoses, pigmented dyschromias, and mild acne scarring. In the past, 50% TCA was a common chemical agent for medium-depth peels, but its use has decreased due to a high rate of complications such as pigmented changes and scarring. Currently, the most frequently used agent is a combination of 35% TCA with Jessner solution or 70% glycolic acid. Phenol 88% alone is also used for medium-depth peels. The healing process involves mild-to-moderate edema, followed by the appearance of a new, erythematous epithelium. Patients are advised to wait at least 3 months before resuming skin care services such as superficial chemical peels, and repeat medium-depth chemical peels should not be performed for at least 1 year.

Deep chemical peels (another type of dermal peel) penetrate the midreticular dermis and are used for patients with severe photodamage, premalignant skin neoplasms, acne scars, and dyschromias. The most common chemical agent used is Baker solution (which consists of 3 mL of 88% phenol, 8 drops of Septisol (hexachlorophene), 3 drops of croton oil, 2 mL of distilled water). The same depth can be achieved using 50% or greater TCA peel; however, the latter has a higher risk of scarring and pigmentation problems. Phenol is cardiotoxic, and patients must be screened for cardiac arrhythmias or medications that could potentially precipitate an arrhythmia. Phenol can also have renal and hepatic toxicities. The likelihood and potential severity of adverse effects increases as the strength of the chemicals and depth of peels increases. With deep chemical peels, there is the potential for long-term pigmented disturbances (ie, areas of hypopigmentation), and selection of patients willing to always wear makeup is advised. Moreover, chemical peels reduce melanin protection, so patients must use protective sunscreen for 9 to 12 months after a medium- to deep-facial peel.

Rationale

The policy was developed with an initial literature search of the MEDLINE database through January 1998. The policy has been updated regularly with searches of the MEDLINE database. Most recently, the literature was reviewed through May 28, 2015. The key literature is described below.

A major issue for the policy is the determination of whether the treatment is primarily cosmetic in nature. Regarding actinic keratoses, these are premalignant lesions, and the medical necessity for their destruction/removal is considered appropriate, although watchful waiting may also be an option. Review articles have suggested that chemical peels might be appropriate when there are numerous lesions (ie, ≥10), making treatment of the individual lesions impractical, and when the treatment constitutes a full-thickness necrosis of the epidermis, which is considered curative. Photodynamic therapy is another option for the treatment of patients with multiple actinic keratoses.

Review articles have also suggested that chemical peels may be appropriate for treatment of active acne when other treatments have failed. While low
concentrations of chemical agents can be administered by the patient at home, higher concentrations are administered in the dermatologist’s office. Superficial glycolic acid peels are usually done as an adjunct to other comedolytic therapy done in the office. Because chemical peeling does not represent a curative therapy, treatments may be continued over the course of years. Superficial peels for these patients represent a more intense form of therapy, inasmuch as referral to a dermatologist is required. Therefore patients with acne requesting coverage for chemical peels should have failed a trial of topical and oral antibiotic therapy for acne. Other applications of chemical peels, including treatment of photoaged skin, wrinkles, and acne scarring are considered cosmetic.

Active Acne

Several randomized trials that used a split-face design have been published. Only 1 RCT was identified that included a placebo group; the others compared 2 chemical peel protocols to one another. The placebo-controlled trial was published in 2014 by Kaminaka et al in Japan. It was double-blind and included 26 patients with moderate to severe facial acne. Patients with moderate acne had 6 to 20 inflammatory lesions and up to 20 noninflammatory lesions, and patients with severe acne had 21 to 50 inflammatory lesions. Failure of previous treatments was not an explicit inclusion criterion. Patients were required to undergo a washout period of 2 months before study participation where they could not use topical or oral antibiotics, retinoids, or corticosteroids. Participants then received a chemical peel treatment on a randomly selected side of the face and a placebo peel on the other side. Both treatments used the same pH acid gel vehicle (pH, 2.0) and the active treatment was a 40% glycolic acid peel. Treatments were given every 2 weeks for a total of 5 applications, and the follow-up visit occurred 2 weeks after the last session (ie, at 10-week follow-up). The overall therapeutic effect was judged by a blinded dermatologist as excellent or good for 23 (92%) of the chemical peel sides and 10 (40%) of the placebo sides; the difference between groups was statistically significant (p<0.01). Moreover, there were statistically significant reductions in inflammatory lesions and total lesion counts at each 2 week assessment and at the final 10-week assessment. No serious side effects or systematic adverse effects were reported.

Among the trials comparing 2 chemical peel interventions, Levesque et al in France published findings in 2011 from a single-blind trial that included 20 patients with active comedonal acne. To be eligible, patients needed to have at least 5 noninflammatory acne lesions on each side of the face and to have fewer than 30 inflammatory acne lesions on the entire face. Participants were required to stop using other acne medications before starting the chemical peel treatment. The treatments being compared were a salicylic acid peel and a lipophilic hydroxy acid (LHA) derivative of salicylic acid; patients received 1 treatment to 1 side of their face (selected randomly) and the other treatment to the second side. Treatments occurred every other week for a total of 6 peels. At the end of the treatment period, the reduction in the proportion of noninflammatory lesions was 55.6% on the LHA side and 48.5% on the salicylic acid side; the difference between groups was not statistically significant (p=0.88). The number of lesions decreased significantly between baseline and the end of treatment in both groups (p<0.001).
Both treatments were well-tolerated (as assessed by a global tolerance scale); there was no significant difference between treatments in erythema (p=0.10).

Another single-blind RCT in acne patients was published in 2010 by Ilknur et al in Turkey.8 Treatments being compared in this study were glycolic acid peels and amino fruit peels. The study included 30 patients with noninflammed lesions and superficial inflammed lesions, with acne grades 0.25 to 2 according to Leeds criteria. Patients received a series of 12 peels on the 2 halves of their face at 2-week intervals (total, 6 months). Twenty-four of 30 (80%) patients completed the study. The mean (SD) number of noninflammed lesions on the glycolic acid side decreased from 49.1 (40.6) at baseline to 18.3 (12.9) at 6 months. The mean (SD) number of noninflammed lesions on the amino fruit acid side decreased from 45.6 (43.5) at baseline to 17.1 (14.2) at 6 months. The reduction in lesions did not differ significantly between groups. Findings were similar for the other primary outcome, number of superficial inflammed lesions. At 6 months, the number (SD) of inflammed lesions was 6.9 (5.2) on the glycolic acid side and 7.0 (7.3) on the amino fruit acid side (p>0.05).

In 2008, Kessler et al published a double-blind split-face study evaluating chemical peels as adjuvant therapy in 20 patients who were at least aged 13 years and had mild to moderately severe facial acne with a minimum of 10 papules and/or pustules.9 The study compared treatment with an alpha hydroxy acid (30% glycolic acid) and a beta hydroxy acid peel (30% salicylic acid). Patients were treated every 2 weeks for a total of 6 weeks and were followed for 2 months after the last treatment. At the time of study enrollment, 75% of patients were using topical medication, and 25% were on oral antibiotics; no changes in acne medication were allowed during the study period. The primary outcome was clinical response according to a blinded evaluator, categorized as good (>50% improvement), fair (21%-50% improvement), poor (10%-20% improvement), no change, or worse. A total of 17 of the 20 patients were included in the analysis; 1 patient dropped out and 2 were lost to follow-up. At 1 month after the last treatment visit, acne lesions declined by 43% on the glycolic acid peel side and 47% on the salicylic acid peel side, a nonsignificant between-group difference. There was also no between-group difference in response at 2 months; the evaluator rated as having good or fair improvement 75% of the glycolic acid peel side and 80% of the salicylic acid peel side. Both chemical agents resulted in improvement compared with baseline. There were a similar number of adverse events with each of the chemical agents; common adverse events were redness and scaling.

None of the RCTs comparing 2 chemical pool protocols also included a control group of patients who received a different type of treatment; therefore, it is uncertain whether either type of peel was more effective than an alternative treatment.

Actinic Keratoses

No controlled studies that evaluated chemical peels for treatment of actinic keratoses were identified. The search yielded 1 case series, a prospective study
from Japan that included 46 patients, 32 with actinic keratoses and 14 with Bowen disease. There was no minimum number of actinic keratoses required for inclusion; that is, the study did not specifically address treatment of multiple actinic keratoses. Patients received phenol peels with 100% pure phenol applied locally to the lesions once a month for a maximum of 8 months (less if a complete response was achieved). Biopsies were performed on all lesions before and at the end of therapy. Twenty-nine of the 32 (91%) patients with actinic keratoses achieved a complete response (defined as an undetectable lesion at least 1 month after the last phenol application). The average number of treatments for patients with actinic keratoses was 2.9. Ten of the 12 (83%) patients with Bowen disease had a complete response, and the average number of treatments in this group was 5.5. All patients were followed for at least 1 year after treatment; median follow-up was 2.8 years. By the 1-year follow-up, 2 of 46 patients (4.3%), 1 with actinic keratoses and 1 with Bowen disease, had experienced recurrences. No systemic adverse effects were reported. The study was limited by lack of a control group and a small sample size, especially in the subset of patients with Bowen disease.

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in June 2015 did not identify any ongoing or unpublished trials that would likely influence this policy.

Summary of Evidence
Limited evidence supports the use of chemical peels for treating multiple actinic keratoses and as second-line treatment of active acne. In 2014, the first placebo-controlled randomized trial evaluating chemical peels for active acne was published and this trial found significantly better outcomes after treatment with a 40% glycolic acid peel compared with placebo treatment. There are no studies that demonstrate improved outcomes using chemical peels in the treatment of photoaged skin or acne-related scarring.

Clinical Input Received From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, input was received through 3 physician specialty societies and 4 academic medical centers while this policy was under review in 2010. The clinical input was consistently in agreement with the medically necessary indications for dermal and epidermal chemical peels. Several reviewers supported use of chemical peels for postacne scarring.
Practice Guidelines and Position Statements

British Association of Dermatologists
In 2007, the British Association of Dermatologists published a guideline on the management of actinic keratoses. Chemical peels were given a “C, III” rating, meaning that there is “poor evidence to support the use of the procedure” and the evidence consists of “opinions of respected authorities based on clinical experience, descriptive studies, or reports of expert committees.”

American Academy of Dermatology
In 2007, the American Academy of Dermatology published a guideline on management of acne vulgaris which included the statement: “There is limited evidence regarding the benefit of physical modalities including glycolic acid peels and salicylic acid peels.”

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

References
Billing Coding/Physician Documentation Information

15788 Chemical peel, facial; epidermal
15789 Chemical peel, facial; dermal
15792 Chemical peel, nonfacial; epidermal
15793 Chemical peel, nonfacial; dermal
17360 Chemical exfoliation for acne (eg, acne paste, acid)

ICD-10 Codes
D48.5 Neoplasm of uncertain behavior of skin
L57.0 Actinic keratosis
L70.0 Acne vulgaris
L70.1 Acne conglobata
L70.9 Acne, unspecified

Additional Policy Key Words
N/A

Policy Implementation/Update Information

11/1/15 New Policy, considered medically necessary except for cosmetic reasons.
11/1/16 No policy statement changes.

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.