Adipose-Derived Stem Cells in Autologous Fat Grafting to the Breast

Policy Number: 7.01.153 Last Review: 12/2017
Origination: 6/2015 Next Review: 12/2018

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will not provide coverage Adipose-Derived Stem Cells in Autologous Fat Grafting to the Breast. This is considered investigational.

When Policy Topic is covered
Not Applicable

When Policy Topic is not covered
The use of adipose-derived stem cells in autologous fat grafting to the breast is considered investigational.

Considerations
This policy does not apply to fat grafting without stem cell enrichment. Autologous fat grafting to the breast without stem cell enrichment of the graft is considered standard of care.

Description of Procedure or Service

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>With breast cancer</td>
<td>▪ Autologous fat grafting to the breast with ADSC</td>
<td>▪ Autologous fat grafting to the breast without ADSC</td>
<td>▪ Overall survival</td>
</tr>
<tr>
<td></td>
<td>enrichment of the graft</td>
<td>enrichment of the graft</td>
<td>▪ Disease-specific survival</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Change in disease severity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Resource utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Treatment-related morbidity</td>
</tr>
</tbody>
</table>
Following a mastectomy, patients often experience pain and irradiated skin; as an adjunct to reconstructive breast surgery, surgeons will sometimes graft autologous fat to the breast. Adipose-derived stem cells (ADSCs) have been proposed as a supplement to the fat graft in an attempt to improve graft survival; however, whether ADSCs plays a role in tumorigenesis it still relatively unknown.

For individuals who have breast cancer who receive of autologous fat grafting to the breast with stem cell enrichment of the graft, the evidence includes small single-arm studies, some of which are prospective. Relevant outcomes are overall survival, disease-specific survival, symptoms, change in disease severity, morbid events, functional outcomes, quality of life, resource utilization, and treatment-related morbidity. Studies have mainly reported patient and investigator satisfaction and functional and cosmetic results. Limitations of the data include a limited numbers of patients, short-term follow-up, and a lack of understanding of the possible oncologic influence ADSC may have on the fat grafting procedure. The evidence is insufficient to determine the effects of the technology on health outcomes.

Background

Autologous Fat Grafting to the Breast

Autologous fat grafting to the breast has been proposed for indications that include breast augmentation and following oncologic surgery. Proposed indications after oncologic surgery include as an adjunct to reconstruction post mastectomy or lumpectomy for contour deformities and improved shape and volume of the breast, for post mastectomy pain syndrome (neuropathic pain), and for irradiated skin to soften the skin and restore it to nonirradiated appearance and consistency which may reduce complication and failure rates of implant reconstruction. Variability in long-term results and oncologic concerns have limited its application in the breast.

Note: This evidence review does not address the use of autologous fat tissue in aesthetic breast augmentation (ie, cosmesis).

Adipose-Derived Stem Cells

Stem cell biology, and the related field of regenerative medicine, involves multipotent stem cells that exist within a variety of tissues, including bone marrow and adipose tissue. A single gram of adipose tissue yields approximately 5×10^3 stem cells; this is 100 to 500 times the number of mesenchymal stem cells found in an equivalent amount of bone marrow. Stem cells, because of their pluripotentiality and unlimited capacity for self-renewal, offer promise for tissue engineering and advances in reconstructive procedures. In particular, adipose tissue represents an abundant and easily accessible source of adipose-derived stem cells (ADSCs), which can differentiate along multiple mesodermal lineages. ADSCs may allow for improved graft survival and generation of new fat tissue after transfer from another site.

The potentially therapeutic properties of ADSC have led to novel techniques of fat grafting in conjunction with ADSC therapy for breast fat grafting. Differentiation of
ADSC into adipocytes may provide a reservoir for adipose tissue turnover. Differentiation of ADSC into endothelial cells, with release of angiogenic growth factors by ADSC, may decrease the rate of graft resorption by increasing blood supply to the grafted fat tissue. Further, ADSC may serve to accelerate wound healing and protect the graft from ischemic reperfusion injury. Current methods for isolating ADSCs can involve various processes, which may include centrifugation and enzymatic techniques that rely on collagenase digestion—which, in turn, is followed by centrifugal separation to isolate the stem cells from primary adipocytes. Isolated ADSCs can be expanded in a monolayer on standard tissue culture plastic surfaces with a basal medium containing 10% fetal bovine serum. Newly developed culture conditions provide an environment in which the study of ADSCs can be done without the interference of animal serum and may also allow rapid expansion of autologous ADSCs in culture for use in human clinical trials. A standard expansion method has not yet been established.

To address the problems of unpredictability and low rates of fat graft survival, Yoshimura et al (2008) developed a technique known as cell-assisted lipotransfer (CAL), which produces autogenous fat rich in ADSCs. In CAL, half of the lipoaspirate is centrifuged to obtain a fraction of concentrated ADSCs; meanwhile, the other half is washed, enzymatically digested, filtered, and spun down to an ADSC-rich pellet. The latter is then mixed with the former, converting a relatively ADSC-poor aspirated fat to ADSC-rich fat.

A point-of-care system is available for concentrating ADSC from mature fat. The Celution System is designed to transfer a patient’s own adipose tissue from one part of the body to another in the same surgical procedure.

Rationale

This evidence review was created in October 2015 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through July 20, 2017.

The literature on the use of fat grafting to the breast with the use of adipose-derived stem cells (ADSCs) consists of retrospective cohort studies, case series, and case reports. The following is a summary of the key literature to date, including systematic reviews of the studies using fat grafting to the breast and all identified case series using fat grafting to the breast with the supportive use of ADSCs.

Adipose-Derived Stem Cell enrichment of autologous fat grafts

In 2007, Rigotti et al reported on the results of a pilot study assessing the presence and effectiveness of ADSCs in 20 consecutive patients undergoing therapy for adverse events of radiotherapy to the breast, chest wall or supraclavicular region, with severe symptoms or irreversible function damage (LENT-SOMA scale grades 3 and 4). The mean age of the patient was 51 years (range, 37-71 years). The rationale behind the study was that the ADSCs, which have been shown to secrete angiogenic and antiapoptotic factors and to
differentiate into endothelial cells, could promote neovascularization in ischemic tissue (eg, irradiated tissue). Targeted areas included the supraclavicular region, the anterior chest wall after mastectomy (with or without breast prosthesis), and breast after quadrantectomy. A lipoaspirate purification procedure was performed by centrifugation to remove a large part of the triglyceride portion of the tissue and to disrupt the cytoplasm of the mature adipocytes to favor their rapid clearance after injection. A stromal-vascular fraction was isolated by enzymatic digestion of extracellular matrix, centrifugation, and filtration, and the fractions were cultured for 2 to 3 weeks to obtain a homogenous cell population. To assess the presence of mesenchymal stem cells, the stromal-vascular fraction derived from the adipose tissue was cultured and characterized by flow cytometry. The number of procedures was 1 in 5 patients, 2 in 8, 3 in 6, and 6 in 1. Clinical follow-up varied between 18 months and 33 months (mean, 30 months). Clinical results after treatment with lipoaspirates were assessed by the LENT-SOMA scale, which is one of the most common systems to assess the late effects of radiotherapy. The 11 patients, who were initially classified as LENT-SOMA grade 4 (irreversible functional damage), progressed to grade 0 (no symptoms), grade 1 and grade 2 in 4, 5 and 1 cases, respectively. In 1 case, no improvements were observed. In the 4 patients who had undergone mastectomy and had breast prostheses and areas of skin necrosis, the necrosis showed complete remission. In the group of 9 patients classified as LENT-SOMA grade 3, fibrosis, atrophy, and retraction progressed to grade 0 and 1 in 5 and 4 cases, respectively.

In 2008, Yoshimura et al reported on the development of a novel strategy known as cell-assisted lipotransfer (CAL), in which autologous ADSCs are used in combination with lipoinjection. From 2003 to 2007, the group performed CAL in 70 patients. Of these patients, CAL was performed in the breast for 60 patients (8 of whom had had breast reconstruction after mastectomy); for the remaining patients, CAL was performed in the face or hip. They reported outcomes for 40 patients with healthy thoraxes and breasts who underwent CAL for purely cosmetic breast augmentation; patients who were undergoing breast reconstruction for an inborn anomaly or following a mastectomy were not included. Nineteen of the 40 patients had been followed for more than 6 months, with a maximum follow-up of 42 months. The authors observed that the transplanted adipose tissue was gradually absorbed during the first 2 postoperative months, and the breast volume showed a minimal change thereafter. Final breast volume showed augmentation by 100 to 200 mL after a mean fat amount of 270 mL was injected. The difference in breast circumference (defined as the chest circumference at the nipple minus the chest circumference at the inframammary fold) had increased in all cases by 4 to 8 cm at 6 months. Cyst formation or microcalcification was detected in 4 patients. The authors concluded that their preliminary results suggested CAL is effective and safe for soft tissue augmentation and superior to conventional lipoinjection, but that additional study was necessary to further evaluate the efficacy of this technique.

Pérez-Cano et al (2012) conducted a single-arm, prospective, multicenter clinical trial of 71 women who underwent breast-conserving surgery for breast cancer and autologous adipose-derived regenerative cell (ADRC)–enriched fat grafting for
reconstruction of defects 150 mL or less (the RESTORE-2 trial). Trial end points included patient and investigator satisfaction with functional and cosmetic results and improvement in overall breast deformity at 12 months after the procedure. Eligible female patients included women age 18 to 75 years who presented with partial mastectomy defects and without breast prosthesis. The RESTORE-2 protocol allowed for up to 2 treatment sessions, and 24 patients elected to undergo a second procedure following the 6-month follow-up visit. Of the 67 patients treated, 50 reported satisfaction with treatment results through 12 months. Sixty-one patients underwent radiotherapy as part of their treatment; 2 patients did not receive radiation, and the status of radiation treatment was not known for the other 4 patients. Using the same metric, investigators reported satisfaction with 57 of 67 patients. There were no serious adverse events associated with the ADRC-enriched fat graft injection procedure. There were no reported local cancer recurrences. The investigators found the LENT-SOMA scale insufficiently sensitive to adequately reflect the clinical improvements seen in the trial population. Patients with LENT-SOMA grade 3 and 4 scores (most severe symptoms) were excluded during screening (note: this may have contributed to the subtle LENT-SOMA score changes observed in the trial). The investigators reported improvement from baseline through 12 months in the degree of retraction or atrophy in 29 of 67 patients, while 34 patients had no change and 4 patients reported worse symptoms. Postradiation fibrosis at 12 months was reported as improved in 29 patients, while 35 patients had no change and 3 patients had worse symptoms. Management of atrophy was reported as improved in 17 patients, with 48 patients having no change and 2 patients reporting worse symptoms. Improvement in these measures was statistically significant. The authors concluded that future comparative studies are needed to determine the incremental benefit of ADRC-enriched fat grafting compared with traditional fat grafting in various clinical circumstances. The follow-up of the study was inadequate to draw conclusions on long-term risk of cancer recurrence.

Summary of Evidence
For individuals who have breast cancer who receive of autologous fat grafting to the breast with stem cell enrichment of the graft, the evidence includes small single-arm studies, some of which are prospective. Relevant outcomes are overall survival, disease-specific survival, symptoms, change in disease severity, morbid events, functional outcomes, quality of life, resource utilization, and treatment-related morbidity. Studies have mainly reported patient and investigator satisfaction and functional and cosmetic results. Limitations of the data include a limited numbers of patients, short-term follow-up, and a lack of understanding of the possible oncologic influence ADSC may have on the fat grafting procedure. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information

Practice Guidelines and Position Statements
American Society for Aesthetic Plastic Surgery and American Society of Plastic Surgeons
The American Society for Aesthetic Plastic Surgery and the American Society of Plastic Surgeons released a joint position statement on the use of stem cells in aesthetic surgery in 2011. Based on a systematic review of the peer-reviewed literature, the societies concluded that while there is potential for the future use of stem cells in aesthetic surgical procedures, the scientific evidence and other data are very limited in terms of assessing the safety or efficacy of stem cell therapies in aesthetic medicine.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in September 2015 did not identify any ongoing or unpublished trials that would likely influence this review.

References

Billing Coding/Physician Documentation Information
19366 Breast reconstruction with other technique
19380 Revision of reconstructed breast
19499 Unlisted procedure, breast
20926 Tissue grafts, other (eg, paratenon, fat, dermis)

Additional Policy Key Words
N/A
Policy Implementation/Update Information

6/1/15 New policy, considered investigational.
12/1/15 Changed title to reflect Association title; Adipose-Derived Stem Cells in Autologous Fat Grafting to the Breast, and updated investigational policy to reflect title change.
12/1/16 No policy statement changes.
12/1/17 No policy statement changes.

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.