Absorbable Nasal Implant for Treatment of Nasal Valve Collapse

Policy Number: 7.01.163 Last Review: 10/2019
Origination: 04/2019 Next Review: 4/2020

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will not provide coverage for Absorbable Nasal Implant for Treatment of Nasal Valve Collapse. This is considered investigational.

When Policy Topic is covered
n/a

When Policy Topic is not covered
The insertion of an absorbable lateral nasal implant for the treatment of symptomatic nasal valve collapse is considered investigational.

Considerations
Previously there was no specific code for absorbable nasal implants. However, effective April 1, 2018, there is HCPCS C9749, which describes this device. Some facilities may still use the unlisted code C1889 (Implantable/insertable device for device intensive procedure, not otherwise classified).

Physician work for the nasal implant placement would be billed with the unlisted CPT code 30999 (Unlisted procedure, nose). Some providers may use CPT 30465 (Repair of nasal vestibular stenosis [eg, spreader grafting, lateral nasal wall reconstruction]) for this service; however the unlisted code is appropriate.

Description of Procedure or Service

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>▪ With symptomatic nasal obstruction due to internal nasal valve collapse</td>
<td>▪ Absorbable lateral nasal wall implant</td>
<td>Comparators of interest are: ▪ Nasal valve dilation ▪ Other surgical graft to repair nasal valve collapse</td>
</tr>
</tbody>
</table>
Nasal valve collapse is a readily identifiable cause of nasal obstruction. Specifically, the internal nasal valve represents the narrowest portion of the nasal airway with the upper lateral nasal cartilages present as supporting structures. The external nasal valve is an area of potential dynamic collapse that is supported by the lower lateral cartilages. Damaged or weakened cartilage will further decrease airway capacity and increase airflow resistance and may be associated with symptoms of obstruction. Patients with nasal valve collapse may be treated with nonsurgical interventions in an attempt to increase the airway capacity but severe symptoms and anatomic distortion are treated with surgical cartilage graft procedures. The placement of an absorbable implant to support the lateral nasal cartilages has been proposed as an alternative to more invasive grafting procedures in patients with severe nasal obstruction. The concept is that the implant may provide support to the lateral nasal wall prior to resorption and then stiffen the wall with scarring as it is resorbed.

For individuals with symptomatic nasal obstruction due to internal nasal valve collapse who receive an absorbable lateral nasal valve implant, the evidence includes 2 nonrandomized prospective, single-cohort industry-sponsored studies. Relevant outcomes are symptoms, change in disease status, treatment-related morbidity, functional outcomes, and quality of life. Both studies are limited by the heterogeneity of the populations evaluated. Specifically, the types and rates of prior nasal procedures were not well described, nor was the clinical rationale for alternative or adjunctive procedural interventions. Overall, improvements in the Nasal Obstruction Symptom Evaluation score have been demonstrated in the study reports. However, a clinically significant difference may not be consistently apparent in small study populations. Some patients meeting the positive responder criteria still reported severe symptoms, and many patients reported some loss of improvement at 1 year. Data elements are missing or difficult to determine for important outcomes. As reported, adverse events appeared to be mild in severity and self-limiting, but still appeared common. Device retrievals are incompletely characterized. They occurred in 10% of patients in the primary cohort study, and it is not known, eg, whether a device retrieval occurred in a patient who had only a unilateral nasal implant. The need for device retrievals appears to occur early in the course of follow-up (1 month); suggesting technical experience limitations on the part of the operator or inappropriate patient selection. The duration of outcomes reporting is less than the duration of absorption of the device (18 months) and the purported completion of tissue remodeling phase (24 months). Randomized controlled trials with a sham control are feasible and should be performed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Background

Nasal Obstruction

Nasal obstruction is defined clinically as a patient symptom that presents as a sensation of reduced or insufficient airflow through the nose. Commonly, patients will feel that they have nasal congestion or stuffiness. In adults, clinicians focus the evaluation of important features of the history provided by the patient such as whether symptoms are unilateral or bilateral. Unilateral symptoms are more
suggestive of structural causes of nasal obstruction. A history of trauma or previous nasal surgery, especially septrhaphy or rhinoplasty, is also important. Diurnal or seasonal variation in symptoms is associated with allergic conditions.

Etiology
Nasal obstruction associated with the external nasal valve is commonly associated with post-rhinoplasty or traumatic sequelae and may require functional rhinoplasty procedures. A common cause of internal nasal valve collapse is septal deviation. Prior nasal surgery, nasal trauma, and congenital anomaly are additional causes.

Pathophysiology
The internal nasal valve, bordered by the collapsible soft tissue between the upper and lower lateral cartilages, anterior end of the inferior turbinate, and the nasal septum, forms the narrowest part of the nasal airway. During inspiration, the lateral wall cartilage is dynamic and draws inward toward the septum and the internal nasal valve narrows providing protection to the upper airways. The angle at the junction between the septum and upper lateral cartilage is normally 10° to 15° in white populations. Given that the internal nasal valve accounts for at least half of the nasal airway resistance; even minor further narrowing of this area can lead to symptomatic obstruction for a patient. Damaged or weakened lateral nasal cartilage will further decrease airway capacity of the internal nasal valve area, increasing airflow resistance and symptoms of congestion.

Physical Examination
A thorough physical examination of the nose, nasal cavity, and the nasopharynx is generally sufficient to identify the most likely etiology for the nasal obstruction. Both the external and internal nasal valve areas should be examined. The external nasal valve is at the level of the internal nostril. It is formed by the caudal portion of the lower lateral cartilage, surrounding soft tissue and the membranous septum.

The Cottle maneuver is an examination in which the cheek on the symptomatic side is gently pulled laterally with 1 to 2 fingers. If the patient is less symptomatic with inspiration during the maneuver, the assumption is that the nasal valve has been widened from a collapsed state or dynamic nasal valve collapse. An individual can perform the maneuver on oneself and it is subjective. A clinician performs the modified Cottle maneuver. A cotton swab or curette is inserted into the nasal cavity to support the nasal cartilage and the patient reports whether there is an improvement in the symptoms with inspiration. In both instances, a change in the external contour of the lateral nose may be apparent to both the patient and the examiner.

Measuring Nasal Obstruction
Stewart et al (2004) proposed the Nasal Obstruction Symptom Evaluation as a validated sinonasal-specific health status instrument that is used to assess the impact of nasal obstruction on the quality of life of affected persons. It is a 5-item questionnaire on breathing problems: nasal congestion or stuffiness, nasal
blockage or obstruction, trouble breathing through the nose, trouble sleeping, and inability to get enough air through the nose during exercise or exertion. The responses are made on a Likert-type scale ranging from 0 (not a problem) to 4 (severe problem). The range of raw scores is 0 to 20. The score is then scaled to a potential total score of 0 to 100 by multiplying the raw score by 5. A score of 100 means the worst possible problem with nasal obstruction.

Lipan and Most (2013) developed a Nasal Obstruction Symptom Evaluation scale-based nasal obstruction severity classification system. The system is proposed as a means to classify patients for clinical management as well as to better define study populations and describe treatment or intervention responses (see Table 1).

<table>
<thead>
<tr>
<th>Severity Class</th>
<th>NOSE Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>5-25</td>
</tr>
<tr>
<td>Moderate</td>
<td>30-50</td>
</tr>
<tr>
<td>Severe</td>
<td>55-75</td>
</tr>
<tr>
<td>Extreme</td>
<td>80-100</td>
</tr>
</tbody>
</table>

NOSE: Nasal Obstruction Symptom Evaluation.

Treatment

Treatment of symptomatic nasal valve collapse includes the use of nonsurgical interventions such as the adhesive strips applied externally across the nose (applying the principle of the Cottle maneuver) or use of nasal dilators, cones, or other devices that support the lateral nasal wall internally (applying the principle of the modified Cottle maneuver).

Severe cases of obstruction result from nasal valve deformities are treated with surgical grafting to widen and/or strengthen the valve. Common materials include cartilaginous autografts and allografts, as well as permanent synthetic grafts. Cartilage grafts are most commonly harvested from the patient’s nasal septum or ear.

Nasal Implants

The placement of an absorbable implant to support the lateral nasal cartilages has been proposed as an alternative to more invasive grafting procedures in patients with severe nasal obstruction.

Regulatory Status

In May 2016, LATERA® (Spirox) was cleared for marketing by the U.S. Food and Drug Administration through the 510(k) process (Food and Drug Administration product code: NHB). LATERA® is the only commercially available absorbable nasal implant for treatment of nasal valve collapse. It is a class II device and regulatory details are summarized in Table 2.
Table 2. Absorbable Nasal Implant Cleared by the Food and Drug Administration

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
<th>Date Cleared</th>
<th>510(k) No.</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATERA® absorbable nasal implant</td>
<td>Spirox (part of Stryker)</td>
<td>2016</td>
<td>K161191</td>
<td>Supporting nasal upper and lower lateral cartilage</td>
</tr>
</tbody>
</table>

Rationale

This evidence review was created in October 2018 with a search of the MEDLINE database performed through September 4, 2018.

Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. Randomized controlled trials are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Absorbable lateral Nasal valve implant

Clinical Context and Therapy Purpose

The purpose of insertion of an absorbable nasal valve implant in patients who have symptomatic nasal valve obstruction due to nasal valve collapse is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does the use of an absorbable nasal valve implant in patients who have symptomatic nasal valve obstruction due to nasal valve collapse improve the net health outcome?

The following PICOTS were used to select literature to inform this review.
Patients
The relevant population of interest is adults who have severe symptomatic nasal obstruction symptoms due to internal nasal valve (also known as zone 1) collapse (NVC). NVC is one of the recognized structural causes of obstructed breathing and congestion, and the diagnosis is primarily clinical. NVC may be unilateral or bilateral and is typically constant with each inspiration. The condition may occur in association with prior trauma or rhinonasal surgery. The evaluation consists of clinical history to elicit alternative causes or co-occurring conditions such as obstructive sleep apnea or medication use. In addition to examination of the head and neck, the Cottle maneuver or modified Cottle maneuver (previously described) is used to rule in NVC. Anterior rhinoscopy and nasal endoscopy are used and rule out structural abnormalities such as septal deviation or mucosal conditions such as enlarged turbinates. Radiographic studies are not generally indicated.

Interventions
The therapy being considered is unilateral or bilateral insertion of an absorbable nasal implant into the lateral nasal wall. The product is predominantly cylindrical in shape with a diameter of 1 mm and an overall length of 24 mm with a forked distal end for anchoring into the maxillary periosteum. It is composed of poly(l-lactide-co-d-l-lactide) 70:30 copolymer, which is absorbed in the body over approximately 18 months. It is packaged with a 16-gauge insertion device. The available product information describes the integrity of the implant to be maintained for 12 months after implantation while a fibrous capsule forms around the device. A remodeling phase where collagen replaces the implant within the capsule persists through 24 months and is the purported mechanism of support for the lateral nasal wall support.

Comparators
The following therapies and practices are currently being used to treat NVC: nonsurgical treatments include the use of externally applied adhesive strips or intranasal insertion of nasal cones. The basic mechanism of action of these treatments is to widen the nasal valve and permit increased airflow. Surgical grafting using either autologous cartilage (typically from the nasal septum, ear, or homologous irradiated rib cartilage) or a permanent synthetic implant may be performed to provide structural support to the lateral wall support defect.

Outcomes
The general outcomes of interest are change in symptoms and disease status, treatment-related morbidity, functional status, and change in quality of life. The Nasal Obstruction Symptom Evaluation (NOSE) score is an accepted symptom questionnaire for research purposes. The score can also be stratified to indicate the degree of severity of the nasal obstruction symptoms. The insertion of the absorbable implant is performed under local anesthesia and the adverse event profile includes mild pain, irritation, bruising and inflammation, awareness of the presence of the implant, infection, and the need for device retrieval prior to complete absorption.
Timing
The duration of follow-up to assess early procedural outcomes is 1 month and at least 24 months would be required to evaluate the durability of symptom improvement as well as to confirm the association with the purported device mechanism of action.

Setting
Insertion of an absorbable nasal implant is performed in the outpatient setting by an otolaryngologist or plastic surgeon.

Study Selection Criteria
No randomized comparative studies were identified to evaluate the absorbable nasal implant. The best available evidence consists of 2 nonrandomized prospective industry-sponsored studies of the commercially available absorbable nasal implant.

Nonrandomized Studies
The characteristics and results of nonrandomized studies are summarized in Tables 3, 4, and 5.

Table 3. Summary of Key Nonrandomized Study Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>Treatment, n</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Insertion of implantb plus adjunctive procedure: 58</td>
<td></td>
</tr>
<tr>
<td>San Nicoló et al (2017)ž</td>
<td>Prospective single cohort</td>
<td>Germany (3 clinical sites)</td>
<td>NR</td>
<td>30</td>
<td>Insertion of 56 lateral wall implantb:</td>
<td>1 wk and 1, 3, 6, 12 mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Bilateral: 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Unilateral: 4</td>
<td></td>
</tr>
</tbody>
</table>

NOSE: Nasal Obstruction Symptom Evaluation; NR: not reported.

ž Baseline inclusion criteria: NOSE score ≥55. Baseline exclusion criteria: septoplasty or turbinate reduction within 6 mo, rhinoplasty within 12 mo, recurrent nasal infection, intranasal steroids, permanent nasal implants or dilators, precancerous or cancerous lesions, radiation or chemotherapy within 24 mo.

b Absorbable polylactide implant marketed in the United States as Latera.

Table 4. Summary of Key Nonrandomized Study NOSE Score Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Baseline</th>
<th>1 Month</th>
<th>3 Months</th>
<th>6 Months</th>
<th>12 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean score (SD)</td>
<td>79.5 (13.5)</td>
<td>34.6 (25.0)</td>
<td>32.0 (28.4)</td>
<td>30.6 (25.8)</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td><0.05</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean change from baseline (SD)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response rateb for implant alone groupc</td>
<td>90.5%</td>
<td>87.8%</td>
<td>89.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Nicoló et al (2017)ž</td>
<td>30</td>
<td>29</td>
<td>30</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Mean score (SD) | 76.7 (14.8) | NR | 28.4 | 33.3 | 35.2
Mean change from baseline (SD) | -48.4 (26.9) | -43.3 (29.7) | -40.9 (29.2)
p | <0.001 | <0.001 | <0.001
N or n | NR | 29 | 30 | 29
Response rate, n (%) | 25 (86.2) | 24 (80) | 22 (75.9)

CI: confidence interval; NOSE: Nasal Obstruction Symptom Evaluation; NR: not reported; SD: standard deviation.

a Paired t tests were used to compare the mean baseline value with each of the follow-up time points to determine whether there was evidence of significant reductions in NOSE scores. CIs not reported.
b Response rate was defined as an improvement of at least 1 NOSE score category or a 20% reduction in NOSE score.
c Implant alone group was taken to be n=43 but any loss to follow-up for this subgroup was not reported for this outcome.
d Paired t tests comparing the mean preoperative NOSE score to the mean score at each follow-up time point. CIs not reported.

Table 5. Summary of Key Nonrandomized Study Safety and Adverse Event Results

<table>
<thead>
<tr>
<th>Study</th>
<th>1 Month</th>
<th>3 Months</th>
<th>6 Months</th>
<th>12 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stolovitzky et al (2018)²</td>
<td>19 events in 17 patients³</td>
<td>19 events in 17 patients³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Nicoló et al (2017)⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N or n</td>
<td>30</td>
<td>29</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Device tolerability, % (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None/mild pain</td>
<td>30 (100)</td>
<td>29(100)</td>
<td>29 (96.7)</td>
<td>29(100)</td>
</tr>
<tr>
<td>Not assessed</td>
<td>1 (3.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmetic changes⁵</td>
<td>26 (86.7)</td>
<td>27 (93.1)</td>
<td>27 (90.0)</td>
<td>26 (89.7)</td>
</tr>
<tr>
<td>Device-related adverse events⁶</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

² Defined as implant- or procedure-related.
³ Taken to be n=99 but no specific reporting for this category.
⁴ Total number only reported for inflammation, foreign body sensation, skin irritation, hematoma, infection, and implant retrievals.
⁵ Photographic review.
⁶ Three device retrievals, 1 hematoma, and 1 inflammation.

Stolovitzky (2018) reported on 6-month outcomes for 101 patients with severe-to-extreme class of NOSE scores were enrolled at 14 U.S. clinics between September 2016 and March 2017. In the total cohort, 40.6% had a history of allergic rhinitis and 32.7% had a history of sinus disease. The types and rates of prior rhinologic surgeries were septoplasty (26.7%), turbinate reduction (29.7%), endoscopic sinus surgery (22.8%), and rhinoplasty (10.9%). The rate of prior septoplasty was 53.5% in the group that received the absorbable implant alone and 87.9% in the group that received implant plus adjunctive surgery. Overall, fifty-eight (57%) patients had adjunctive procedures (not expressly reported) in addition to the implant placement. In addition to the NOSE score, patients were assessed pre- and postoperatively with the Lateral Wall Insufficiency score, which
is based on a review of a lateral wall motion video. Patients reported visual analog scale scores for nasal congestion at each follow-up visit.

The purpose of the gaps tables (see Tables 6 and 7) is to display notable gaps identified in each study. This information is synthesized as a summary of the body of evidence following each table and provides the conclusions on the sufficiency of the evidence supporting the position statement.

Table 6. Relevance Gaps

<table>
<thead>
<tr>
<th>Study</th>
<th>Population<sup>a</sup></th>
<th>Intervention<sup>b</sup></th>
<th>Comparator<sup>c</sup></th>
<th>Outcomes<sup>d</sup></th>
<th>Duration of Follow-Up<sup>e</sup></th>
</tr>
</thead>
</table>
| Stolovitzky et al (2018)² | 1. Patient population varied in important clinical characteristics and types and rates of prior rhinologic surgery
2. Clinical context for patient selection for absorbable implant vs implant plus adjunctive surgery not described
5. Implant plus adjunctive surgery group a subpopulation of potential intended use | | | 6. Clinically significant difference not supported. A positive responder could still have severe symptoms. | 1. Duration of outcomes reporting less than duration of absorption of device and purported completion of remodeling phase |
| San Nicoló et al (2017)⁸ | 2. Clinical context for patient selection for absorbable implant vs alternative surgery not described
3. Study population is heterogeneous: 68% had prior rhinonasal surgery | | | 6. Clinically significant difference not supported. A positive responder could still have severe symptoms. | 1. Duration of outcomes reporting less than duration of absorption of device and purported completion of remodeling phase |

The evidence gaps stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

^a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use. 5. Study population is subpopulation of intended use

^b Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator

^c Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.

^d Outcomes key: 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. Not CONSORT reporting of harms; 4. Not established and validated measurements; 5. Clinically significant difference not prespecified; 6. Clinically significant difference not supported

^e Follow-Up key: 1. Not sufficient duration for benefits; 2. Not sufficient duration for harms.
Table 7. Study Design and Conduct Gaps

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation</th>
<th>Blinding</th>
<th>Selective Reporting</th>
<th>Data Completeness</th>
<th>Power</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stolovitzky et al (2018)</td>
<td>1. No sham control and not blinded to treatment assignment</td>
<td>1. No sham control and not blinded to treatment assignment</td>
<td>1. Data incomplete for populations assessed for various outcomes 2. Missing data for patients who had device retrievals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Nicolò et al (2017)</td>
<td>1. No sham control and not blinded to treatment assignment</td>
<td>1. No sham control and not blinded to treatment assignment</td>
<td>2. Missing data for patients who had device retrievals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence gaps stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

- **Blinding key**: 1. Not blinded to treatment assignment; 2. Not blinded outcome assessment; 3. Outcome assessed by treating physician.
- **Selective Reporting key**: 1. Not registered; 2. Evidence of selective reporting; 3. Evidence of selective publication.
- **Data Completeness key**: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).
- **Power key**: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.
- **Statistical key**: 1. Analysis is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Analysis is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Summary of Evidence

For individuals with symptomatic nasal obstruction due to internal nasal valve collapse who receive an absorbable lateral nasal valve implant, the evidence includes 2 nonrandomized prospective, single-cohort industry-sponsored studies. Relevant outcomes are symptoms, change in disease status, treatment-related morbidity, functional outcomes, and quality of life. Both studies are limited by the heterogeneity of the populations evaluated. Specifically, the types and rates of prior nasal procedures were not well described, nor was the clinical rationale for alternative or adjunctive procedural interventions. Overall, improvements in the Nasal Obstruction Symptom Evaluation score have been demonstrated in the study reports. However, a clinically significant difference may not be consistently apparent in small study populations. Some patients meeting the positive responder criteria still reported severe symptoms, and many patients reported some loss of improvement at 1 year. Data elements are missing or difficult to determine for important outcomes. As reported, adverse events appeared to be mild in severity and self-limiting, but still appeared common. Device retrievals are incompletely characterized. They occurred in 10% of patients in the primary cohort study, and it is not known, eg, whether a device retrieval occurred in a patient who had only a unilateral nasal implant. The need for device retrievals appears to occur early in the course of follow-up (1 month); suggesting technical experience limitations on the part of the operator or inappropriate patient selection. The
duration of outcomes reporting is less than the duration of absorption of the device (18 months) and the purported completion of tissue remodeling phase (24 months). Randomized controlled trials with a sham control are feasible and should be performed. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

American Academy of Otolaryngology - Head Neck Surgery
The American Academy of Otolaryngology - Head Neck Surgery (2010) released a clinical consensus statement on the diagnosis and management of nasal valve compromise. Table 8 summarizes the key consensus statements relevant to this review. The statement also indicated that nasal endoscopy and nasal photography were both deemed useful but not routinely required.

Table 8. Consensus Agreement: Diagnosis and Treatment of NVC

<table>
<thead>
<tr>
<th>Item</th>
<th>Statement</th>
<th>Level of Consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>NVC is a distinct clinical entity separate from other anatomic reasons for nasal obstruction</td>
<td>Agreement/strong agreement</td>
</tr>
<tr>
<td>History and physical</td>
<td>Main symptom of NVC is decreased airflow as reported by the patient</td>
<td>Strong agreement</td>
</tr>
<tr>
<td>Adjunctive tests</td>
<td>Anterior rhinoscopy can be adequate for an intranasal evaluation of the nasal valve, weak or malformed nasal cartilages</td>
<td>Agreement/strong agreement</td>
</tr>
<tr>
<td>Adjunctive tests</td>
<td>Inspiratory collapse of the lateral nasal wall or alar rim is consistent with NVC</td>
<td>Agreement/strong agreement</td>
</tr>
<tr>
<td>Adjunctive tests</td>
<td>Increased nasal obstruction associated with deep inspiration is consistent with NVC</td>
<td>Agreement/strong agreement</td>
</tr>
<tr>
<td>Adjunctive tests</td>
<td>Criterion standard test to diagnose NVC exists</td>
<td>Strong disagreement</td>
</tr>
<tr>
<td>Outcome measures</td>
<td>Various patient-reported outcomes (eg, visual analog scales, satisfaction measures, quality of life scales) are valid indicators of successful intervention</td>
<td>General agreement</td>
</tr>
<tr>
<td>Management</td>
<td>Nasal strips, stents, or cones can be used to treat some patients</td>
<td>Strong agreement</td>
</tr>
<tr>
<td>Management</td>
<td>A surgical procedure that is intended to support the lateral nasal wall/alar rim is a distinct entity from procedures that correct a deviated nasal septum or hypertrophied turbinate</td>
<td>Strong agreement</td>
</tr>
</tbody>
</table>

NVC: nasal valve compromise.
U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in September 2018 identified an ongoing trial that might influence this review is listed in Table 9.

Table 9. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03400787a</td>
<td>Latera® Absorbable Nasal Implant vs. Sham Control for Lateral Nasal Valve Collapse</td>
<td>150</td>
<td>Feb 2020</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

a Denotes industry-sponsored or cosponsored trial.

REFERENCES

Billing Coding/Physician Documentation Information

30999 Unlisted procedure, nose
30465 Repair of nasal vestibular stenosis (eg, spreader grafting, lateral nasal wall reconstruction)
C9749 Repair of nasal vestibular lateral wall stenosis with implant(s)

ICD-10 Codes
J34.89 Other specified disorders of nose and nasal sinuses
J34.9 Unspecified disorder of nose and nasal sinuses
Previously there was no specific code for absorbable nasal implants. However, effective April 1, 2018, there is HCPCS C9749, which describes this device. Some facilities may still use the unlisted code C1889 (Implantable/insertable device for device intensive procedure, not otherwise classified).

Physician work for the nasal implant placement would be billed with the unlisted CPT code 30999 (Unlisted procedure, nose). Some providers may use CPT 30465 (Repair of nasal vestibular stenosis [eg, spreader grafting, lateral nasal wall reconstruction]) for this service; however the unlisted code is appropriate.

Additional Policy Key Words

N/A

Policy Implementation/Update Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1/19</td>
<td>The policy was created to evaluate a single commercially available absorbable nasal implant product for treatment of internal nasal valve collapse. The policy statement is investigational.</td>
</tr>
<tr>
<td>10/1/19</td>
<td>No policy statement changes.</td>
</tr>
</tbody>
</table>

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.