Responsive Neurostimulation for the Treatment of Refractory Partial Epilepsy

Policy Number: 7.01.143 Last Review: 8/2017
Origination: 8/2015 Next Review: 8/2018

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for Responsive Neurostimulation for the Treatment of Refractory Partial Epilepsy when it is determined to be medically necessary because the criteria shown below are met.

When Policy Topic is covered
Responsive neurostimulation may be considered medically necessary for patients with partial epilepsy who meet ALL of the following criteria:

- Are 18 years or older.
- Have a diagnosis of partial-onset seizures with 1 or 2 well-localized seizure foci identified.
- Have an average of 3 or more disabling seizures (eg, motor partial seizures, complex partial seizures, or secondary generalized seizures) per month over the prior 3 months;
- Are refractory to medical therapy (have failed 2 or more appropriate antiepileptic medications at therapeutic doses).
- Are not candidates for focal resective epilepsy surgery (eg, have an epileptic focus near eloquent cerebral cortex; have bilateral temporal epilepsy).
- Do not have contraindications for RNS placement (see Considerations).

When Policy Topic is not covered
Responsive neurostimulation is considered investigational for all other indications.

Considerations
Contraindications for RNS placement include 3 or more specific seizure foci, presence of primary generalized epilepsy, or presence of a rapidly progressive neurologic disorder.
Description of Procedure or Service

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of</td>
<td>Comparators of</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With refractory</td>
<td>interest are:</td>
<td>interest are:</td>
<td>• Symptoms</td>
</tr>
<tr>
<td>partial epilepsy</td>
<td>• Responsive</td>
<td>• Vagus nerve</td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td>neurostimulation</td>
<td>stimulation</td>
<td>• Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Medical therapy</td>
<td>• Treatment-related</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Treatment-related</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>morbidity</td>
</tr>
</tbody>
</table>

Responsive neurostimulation (RNS) for the treatment of epilepsy involves the use of 1 or more implantable electric leads that serve both a seizure detection and neurostimulation function. The device is programmed using a proprietary algorithm to recognize seizure patterns from electrocorticography output and to deliver electrical stimulation with the goal of terminating a seizure. One device, the NeuroPace RNS System, has U.S. Food and Drug Administration (FDA) approval for the treatment of refractory partial (focal) epilepsy.

For individuals who have refractory partial (focal) epilepsy who receive RNS, the evidence includes 1 industry-sponsored randomized controlled trial (RCT), which was used for FDA approval of the NeuroPace RNS System, as well as case series. Relevant outcomes are symptoms, morbid events, quality of life, and treatment-related mortality and morbidity. The pivotal trial was well-designed and well-conducted; it reported that RNS is associated with improvements in mean seizure frequency in patients with refractory partial epilepsy, with an absolute difference in change in seizure frequency of about 20% between groups, though the percentage of treatment responders with at least a 50% reduction in seizures did not differ from sham control. Overall, the results suggested a modest reduction in seizure frequency in a subset of patients. The number of adverse events reported in the available studies is low, although the data on adverse events were limited because small study samples. Generally, patients who are candidates for RNS are severely debilitated and have few other treatment options, so the benefits are likely high relative to the risks. In particular, patients who are not candidates for resective epilepsy surgery and have few treatment options may benefit from RNS. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Consensus input from clinical vetting recommended that RNS is medically necessary for a subgroup of patients with refractory partial epilepsy. Therefore, RNS may be considered medically necessary in patients with medication-refractory partial epilepsy who are not candidates for epilepsy surgery, as outlined in the Policy statement.

Background

Seizures and Seizure Disorders

Focal-onset seizures (previously referred to as partial seizures) arise from a discrete area of the brain and can cause a range of symptoms, depending on the seizure type and the brain area involved. (A note on terminology: “focal-onset
seizures” may be referred to in some studies as “partial seizures.” A 2017 position paper from the International League Against Epilepsy outlined updated terminology for seizure and epilepsy subtypes. For example, focal-onset seizures are subdivided based on the associated level of consciousness, and subsequently into whether they are motor or non-motor-onset. Because most of the literature related to responsive neurostimulation uses the older classifications, we use the older terminology through much of the review.)

Focal-onset seizures were further grouped into simple partial seizures, which may be associated with motor, sensory, or autonomic symptoms, or complex partial seizures, in which consciousness is affected. Complex partial seizures may be associated with abnormal movements (automatisms). In some cases, partial seizures may result in secondary generalization, in which widespread brain electrical activity occurs after the onset of a partial seizure, thereby resulting in a generalized seizure.

Seizure disorders may be grouped into epileptic syndromes based on a number of factors, including the types of seizures that occur and their localization, the age of onset, patterns on electroencephalogram (EEG), associated clinical or neuroimaging findings, and genetic factors. Temporal lobe epilepsy is the most common syndrome associated with partial-onset seizures. Of those with partial seizures, 30% to 40% have intractable epilepsy, defined as a failure to control seizures after 2 seizure medications have been appropriately chosen and used.

Epilepsy Treatment

Medical Therapy for Seizures

Standard therapy for seizures, including partial seizures, includes treatment with 1 or more of various of antiepileptic drugs (AEDs), which include newer AEDs, like oxcarbazepine, lamotrigine, tiagabine, gabapentin, pregabalin, levetiracetam, and zonisamide. Currently, response to AEDs is less than ideal: a systematic review comparing newer AEDs for refractory partial epilepsy reported an overall average responder rate in treatment groups of 34.8%. As a result, a substantial number of patients do not achieve good seizure control with medications alone.

Surgical Therapy for Seizures

When a discrete seizure focus can be identified, seizure control may be achieved through resection of the seizure focus (epilepsy surgery). For temporal lobe epilepsy, 1 randomized controlled trial (RCT) demonstrated that surgery for epilepsy was superior to prolonged medical therapy in reducing seizures associated with impaired awareness and in improving quality of life. Surgery for refractory focal epilepsy (excluding simple partial seizures) is associated with 5-year freedom from seizure rates of 52%, with 28% of seizure-free individuals able to discontinue AEDs. Selection of appropriate patients for epilepsy surgery is important, because those with nonlesional extratemporal lobe epilepsy have worse outcomes after surgery than those with nonlesional temporal lobe epilepsy. Some patients are not candidates for epilepsy surgery if the seizure focus is located in an eloquent
area of the brain or other region that cannot be removed without risk of significant neurologic deficit.

Neurostimulation for Neurologic Disorders

Electrical stimulation at one of several locations has been used as therapy for epilepsy, either in addition to or as an alternative to medical or surgical therapy. Vagus nerve stimulation (VNS) has been widely used for refractory epilepsy, following Food and Drug Administration (FDA) approval of a VNS device in 1997 and 2 RCTs evaluating VNS in epilepsy. Although the mechanism of action for VNS is not fully understood, VNS is thought to reduce seizure activity through activation of vagal visceral afferents with diffuse central nervous system projections, leading to a widespread effect on neuronal excitability.

Stimulation of other locations in the neuroaxis has been studied for a variety of neurologic disorders. Electrical stimulation of deep brain nuclei (deep brain stimulation [DBS]) involves the use of chronic, continuous stimulation of a target. It has been most widely used in the treatment of Parkinson disease and other movement disorders, and has been investigated for treating epilepsy. DBS of the anterior thalamic nuclei was studied in 1 RCT, the Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy (SANTE) trial, but DBS is not currently approved by FDA for stimulation of the anterior thalamic nucleus. Stimulation of the cerebellar and hippocampal regions and the subthalamic, caudate, and centromedian nuclei have also been evaluated for the treatment of epilepsy.

Responsive Neurostimulation for Epilepsy

Responsive neurostimulation (RNS) shares some features with DBS, but is differentiated by its use of direct cortical stimulation and by its use in both monitoring and stimulation. The RNS system provides stimulation in response to detection of specific epileptiform patterns, while DBS provides continuous or intermittent stimulation at preprogrammed settings.

Development of the RNS system arose from observations related to the effects of cortical electrical stimulation for seizure localization. It has been observed that electrical cortical stimulation can terminate induced and spontaneous electrographic seizure activity in humans and animals. Patients with epilepsy may undergo implantation of subdural monitoring electrodes for the purposes of seizure localization, which at times have been used for neurostimulation to identify eloquent brain regions. Epileptiform discharges that occur during stimulation for localization can be stopped by a train of neighboring brief electrical stimulations.

In tandem with the recognition that cortical stimulation can stop epileptiform discharges was development of fast pre-ictal seizure prediction algorithms. These algorithms interpret electrocorticographic data from detection leads situated over the cortex. The RNS process thus includes electrocorticographic monitoring via cortical electrodes, analysis of data through a proprietary seizure detection algorithm, and delivery of electrical stimulation via both cortical and deep implanted electrodes in an attempt to halt a detected epileptiform discharge.
One device, the NeuroPace RNS System, is currently approved by FDA and is commercially available. The system consists of an implantable neurostimulator, a cortical strip lead, a depth lead, a programmer and telemetry wand, and a patient data management system. Before device implantation, the patient undergoes seizure localization, which includes inpatient video-EEG monitoring and magnetic resonance imaging for detection of epileptogenic lesions. Additional testing may include EEG with intracranial electrodes, intraoperative or extraoperative stimulation with subdural electrodes, additional imaging studies, and/or neuropsychological testing and intracarotid amytal (Wada) testing. The selection and location of the leads are based on the location of seizure foci. Cortical strip leads are recommended for seizure foci on the cortical surface, while the depth leads are recommended for seizure foci beneath the cortical surface. The implantable neurostimulator and cortical and/or depth leads are implanted intracranially. The neurostimulator is initially programmed in the operating room to detect electrocorticographic activity. Responsive therapy is initially set up using standard parameters from the electrodes from which electrical activity is detected. Over time, the responsive stimulation settings are adjusted on the basis of electrocorticography data, which are collected by the patient through interrogation of the device with the telemetry wand and transmitted to the data management system.11

RNS for Seizure Monitoring

Although the intent of the electrocorticography component of the RNS system is to provide input as a trigger for neurostimulation, it also provides continuous seizure mapping data (chronic unlimited cortical electrocorticography) that may be used by practitioners to evaluate patients’ seizures. In particular, the seizure mapping data have been used for surgical planning of patients who do not experience adequate seizure reduction with RNS placement. Several studies have described the use of RNS in evaluating seizure foci for epilepsy surgery12 or for identifying whether seizure foci are unilateral.13,14

This review does not further address use of RNS exclusively for seizure monitoring.

Regulatory Status

In November 2013, the NeuroPace RNS® System (NeuroPace, Mountain View, CA) was approved by the U.S. Food and Drug Administration (FDA) through the premarket approval process for the following indication15:

“The RNS® System is an adjunctive therapy in reducing the frequency of seizures in individuals 18 years of age or older with partial onset seizures who have undergone diagnostic testing that localized no more than 2 epileptogenic foci, are refractory to two or more antiepileptic medications, and currently have frequent and disabling seizures (motor partial seizures, complex partial seizures and/or secondarily generalized seizures). The RNS® System has demonstrated safety and effectiveness in patients who average 3 or more disabling seizures per month over the three most recent months (with no month with fewer than two seizures), and has not been evaluated in patients with less frequent seizures.”
Rationale
This evidence review was originally created in November 2014 and has been updated regularly with searches of the MEDLINE database. The most recent literature review was performed through February 23, 2017.

For the evaluation of responsive neurostimulation (RNS) for partial epilepsy, the optimal study design would be a randomized controlled trial (RCTs) in which all subjects receive an RNS device but only the treatment group has the device activated (sham-controlled). Subjects with epilepsy may have a transient improvement in seizure frequency following any kind of neurosurgical intervention. Because RNS is considered for patients refractory to other treatments, the appropriate comparison group could consist of other treatments for partial epilepsy considered to be efficacious, including medical management, surgical management, other types of implanted stimulators (eg, vagal nerve stimulators), or a combination. In patients with treatment-refractory epilepsy, the disease is expected to have a natural history involving persistent seizures. Therefore, studies that compare seizure rates and seizure-free status pre- and post-RNS treatment may also provide evidence about the efficacy of the RNS device.

The body of evidence addressing whether RNS is associated with improved health outcomes for patients with partial epilepsy includes 1 industry-sponsored RCT, which was used for the device’s U.S. Food and Drug Administration (FDA) approval, as well as multiple case series and case reports. The following is a summary of the key literature to date.

RNS for Treatment of refractory Partial Epilepsy

Randomized Controlled Trials

Pivotal Trial
RNS for epilepsy was evaluated in the RNS System Pivotal Trial, a multicenter, double-blinded, sham-controlled trial that served as the basis of FDA’s approval of the device.16 Published by Morrell et al (2011), this RCT included 191 patients with medically intractable partial epilepsy who were implanted with the RNS device and randomized to treatment or sham control after a 1-month postimplant period during which time no subjects had the device activated. Eligible patients were adults with partial-onset seizures whose epilepsy had not been controlled with at least 2 trials of antiepileptic drugs (AEDs), who had at least 3 disabling seizures (motor partial seizures, complex partial seizures, or secondary generalized seizures) per month on average, and who had standard diagnostic testing that localized 1 or 2 epileptogenic foci. Thirty-two percent of those implanted had prior epilepsy surgery, and 34% had a prior vagal nerve stimulator.

Patients were randomized to active stimulation (n=97) or sham stimulation (n=94). After the 4-week postoperative period, patients received either sham or active stimulation according to group assignment. There was a 4-week stimulation
optimization period, followed by a 3-month blinded evaluation period. In the evaluation period, all outcome data were gathered by a physician blinded to group assignment, and the neurostimulator was managed by a nonblinded physician. One patient in each group did not complete the stimulus optimization period (n=1 due to subject preference in the active stimulation group; n=1 due to death in the sham stimulation group). An additional patient in each group did not complete the blinded evaluation phase due to emergent explant of the device. After the 3-month blinded evaluation period, all patients received active stimulation during an open-label follow-up period. At the time of the Morrell publication, 98 subjects had completed the open-label period and 78 had not. Eleven patients did not complete the open-label follow-up period (5 due to death, 2 to emergent explant, 4 to study withdrawal).

The mean preimplant seizure frequency per month in the treatment group was 33.5 (range, 3-295) and 34.9 (range, 3-338) in the sham group. The trial’s primary effectiveness objective was to demonstrate a significantly greater reduction in the frequency of total disabling seizures in the treatment group compared with the sham group during the blinded evaluation period relative to baseline (preimplant). Mean seizure frequency modeled using generalized estimating equations was significantly reduced in the treatment group compared with the sham group (p=0.012). During the blinded evaluation period, the mean seizure frequency in the treatment group was 22.4 (range, 0.0-226.8) and 29.8 (range, 0.3-44.46) in the sham group. The treatment group experienced a -37.9% change in seizure frequency (95% confidence interval [CI], -46.7% to -27.7%), while the sham group experienced a -17.3% change in seizure frequency (95% CI, -29.9% to -2.3%).

By the third month of the blinded evaluation period, the treatment group had 27% fewer days with seizures while the sham group experienced 16% fewer days (p=0.048). There were no significant differences between groups over the blinded evaluation period for secondary end points of responder rate (proportion of subjects who experienced a ≥50% reduction in mean disabling seizure frequency vs the preimplant period), change in average frequency of disabling seizures, or change in seizure severity.

During the open-label period, subjects in the sham group demonstrated significant improvements in mean seizure frequency compared with the preimplant period (p=0.04). For all subjects (treatment and sham control), the responder rate at 1 year postimplant was 43%. Overall quality of life (QOL) scores improved for both groups compared with baseline at 1 year (p=0.001) and 2 years postimplant (p=0.016).

For the study’s primary safety end point, the significant adverse event rate over the first 28 days postimplant was 12%, which did not differ significantly from the prespecified literature-derived comparator of 15% for implantation of intracranial electrodes for seizure localization and epilepsy surgery. During the implant period and the blinded evaluation period, the significant adverse event rate was 18.3%,
which did not differ significantly from the prespecified literature-derived comparator of 36% for implantation and treatment with deep brain stimulation (DBS) for Parkinson disease. The treatment and sham groups did not differ significantly in terms of mild or serious adverse events during the blinded evaluation period. Intracranial hemorrhage occurred in 9 (4.7%) of 191 subjects; implant or incision site infection occurred in 10 (5.2%) of 191 subjects, and the devices were explanted in 4 of these subjects.

In a follow-up to the RNS System Pivotal Trial, Heck et al (2014) compared outcomes at 1 and 2 years postimplant with baseline for patients in both groups (sham and control) who had the RNS stimulation device implanted during the RNS System Pivotal Trial. Of the 191 subjects implanted, 182 subjects completed follow-up to 1 year postimplant and 175 subjects completed follow-up to 2 years postimplant. Six patients withdrew from the trial, 4 underwent device explantation due to infection, and 5 died, with 1 death due to sudden unexplained death in epilepsy. During the open-label period, at 2 years of follow-up, median percent reduction in seizures was 53% compared with the preimplant baseline (p<0.001), and the responder rate was 55%.

Follow-Ups Analyses to the Pivotal Subjects

Loring et al (2015) reported an analysis of one of the trial’s prespecified safety end points, neuropsychologic function, during the trial’s open-label period. Neuropsychological testing focused on language and verbal memory, measured by the Boston Naming Test (BNT) and the Rey Auditory Verbal Learning Test (AVLT). One hundred seventy-five subjects had cognitive assessment scores at baseline and at 1 or 2 years or both and were included in this analysis. The authors used reliable change indices (RCIs) to identify patients with changes in test scores beyond that attributed to practice effects or measurement error in the test-retest setting, with 90% RCIs used for classification. Overall, no significant group-level declines in any neuropsychological outcomes were detected. On the BNT, 23.5% of subjects demonstrated RCI improvements while 6.7% had declines; on the AVLT, 6.9% of subjects demonstrated RCI improvements and 1.4% demonstrated declines.

Meador et al (2015) reported on QOL and mood outcomes for individuals in the RNS pivotal trial. At the end of the blinded study period, both groups reported improvements in Quality of Life in Epilepsy Inventory‒89 (QOLIE-89) scores, with no statistically significant differences between groups. In analysis of those with follow-up to 2 years postenrollment, implanted patients had statistically significant improvements in QOLIE-89 scores from enrollment to 1- and 2-year follow-up. Mood, as assessed by the Beck Depression Inventory and the Profile of Mood States, did not worsen over time.

Systematic Reviews

In 2014, Cox et al reported a systematic review of implantable neurostimulation devices, including RNS, along with vagus nerve stimulation (VNS) and DBS for refractory epilepsy. The evidence on RNS in this review was primarily from the pivotal RCT described previously (Morrell et al). Reviewers concluded that RNS is
“promising,” but that improvements in the accuracy of the seizure prediction method and standardization of electrical stimulation parameters were needed.

Gooneratne et al (2016) performed a systematic review comparing neurostimulation technologies in refractory focal-onset (partial) epilepsy. They performed a literature search for studies with long-term efficacy data (≥5 years) and at least 30 patients evaluating VNS, cortical responsive stimulation, or DBS in refractory focal or partial epilepsy using PubMed and Cochrane databases in November 2015. No direct comparisons of the technologies were found. The previously described pivotal trial of RNS was the only RNS study included. Indirect comparisons of the technologies were limited by differences in RCT inclusion criteria, definition of response and methods of data collection between studies. Reviewers concluded that all 3 neurostimulation technologies showed long-term efficacy, with progressively better seizure control over time.

Noncomparative Studies
Before and during the pivotal RCT to evaluate the RNS system, short- and long-term outcomes after the use of the device have been described in case series.

The Long-Term Treatment (LTT) Study is a 7-year, multicenter, prospective, open-label study to evaluate the RNS system’s long-term efficacy and safety in individuals who participated in device’s feasibility or pivotal trials. Bergey et al (2015) reported follow-up for 191 participants in the LTT Study (of a total of 230 originally enrolled in the LTT Study) for a median 5.4 years. Of those who discontinued, 3 were lost to follow-up, 28 patients withdrew (9 to pursue other treatments, 5 due to insufficient efficacy, 5 decided not to replace the RNS system after expected battery depletion or 5 after infection resolved, 3 decided not to replace the RNS system after expected battery depletion or 5 after infection resolved, 3 for noncompliance, 1 for elective explant, 1 due to ongoing suicidality/noncompliance), 4 underwent emergent explant, and 4 died. For follow-up at years 3 and 6, the median percent reductions in seizures were 60% and 66%, respectively. Statistically significant QOL improved at 4 years, with a trend toward improvement at 5 years. The most common adverse events were implant site infection (n=24 [9.4%]) and increase in complex partial seizures (n=20 [7.8%]).

Since device approval, 1 single-center study (2015) has reported outcomes after RNS implantation (40 surgeries) in 10 patients. In this series, 1 patient had an implant site infection requiring device explantation and another had multiple lead breakages.

Earlier studies have reported that the RNS implant was well-tolerated in small numbers of patients. Anderson et al (2008) reported procedural details and clinical outcomes for 4 patients treated with the RNS device (as part of the device’s pivotal clinical trial) and noted that the device implant was well-tolerated and qualitatively reduced the frequency of seizures. In 2004, Kossoff et al reported qualitative reduction in seizure frequency in 4 patients with intractable seizures who received neurostimulation with an external RNS (a precursor to the FDA-approved implantable RNS device) during intracranial monitoring to localize seizure onset for surgery mapping.
Cases in which chronic (ie, not responsive to detected seizure activity) focal cortical stimulation was used to treat medically refractive epilepsy have also been described. In these cases, cortical electrodes were placed during planned neurosurgical intervention for seizure mapping and were connected to a pulse generator.

Section Summary: RNS for Treatment of Refractory Partial Epilepsy

The most direct and rigorous evidence related to the effectiveness of RNS in the treatment of refractory partial seizures is from the RNS System Pivotal Trial, in which patients who had partial epilepsy refractory to at least 2 medications and received RNS treatment demonstrated a significantly greater reduction in their rates of seizures compared with sham control patients. Although this single RCT was relatively small (97 patients in the treatment group), it was adequately powered for its primary outcome and all patients were treated with the device during the open-label period (97 in the original treatment group, 94 in the original sham group) and demonstrated a significant improvement in seizure rates compared with baseline. However, there were no differences in the percentage of patients who responded to RNS, and no difference on most of the other secondary outcomes. Follow-up has been reported to 5 years postimplantation, without major increases in rates of adverse events.

Safety of the RNS System

As a surgical procedure, implantation of the RNS system is associated with the risks that should be balanced against the risks of alternative treatments, including AEDs and other invasive treatments (vagal nerve stimulator and epilepsy surgery), and the risks of uncontrolled epilepsy. During the RNS System Pivotal Trial, rates of serious adverse events were relatively low: 3.7% of patients had implant site infections, 6% had lead revisions or damage, and 2.1% percent had intracranial hemorrhages during initial implantation.

FDA’s summary of safety and effectiveness data (SSED) for the RNS system summarized deaths and adverse events. As reported in the SSED, as of October 24, 2012, there were 11 deaths in the RNS System trials, including the pivotal trial and the ongoing long-term treatment study. Two of the deaths were suicides (1 each in the pivotal and LTT studies), 1 was due to lymphoma, 1 was related to complications of status epilepticus, and 7 were attributed to possible, probable, or definite sudden unexplained death in epilepsy (SUDEP). With 1195 patient implant years, the estimated SUDEP rate is 5.9 per 1000 implant years, which is comparable with the expected rate for patients with refractory epilepsy.

Additional safety outcomes have been reported to 5 years postimplantation through the device’s LTT study (see above).

As of March 23, 2017, there were 91 reports in the FDA Manufacturer and User Facility Device Experience (MAUDE) database for product code PFN. Five were labeled as event type "Malfunction," 1 was extended hospitalization due to aphasia, and all remaining reports were labeled as "Injury." Seven of the "Injury"
event narratives mentioned hemorrhages, 3 stroke, 6 fluid leakage, 46 infection, 5 swelling or edema, and in 5 the device had become exposed.

Summary of Evidence
For individuals who have refractory partial (focal) epilepsy who receive responsive neurostimulation (RNS), the evidence includes 1 industry-sponsored randomized controlled trial (RCT), which was used for Food and Drug Administration approval of the NeuroPace RNS System, as well as case series. Relevant outcomes are symptoms, morbid events, quality of life, and treatment-related mortality and morbidity. The pivotal trial was well-designed and well-conducted; it reported that RNS is associated with improvements in mean seizure frequency in patients with refractory partial epilepsy, with an absolute difference in change in seizure frequency of about 20% between groups, though the percentage of treatment responders with at least a 50% reduction in seizures did not differ from sham control. Overall, the results suggested a modest reduction in seizure frequency in a subset of patients. The number of adverse events reported in the available studies is low, although the data on adverse events were limited because small study samples. Generally, patients who are candidates for RNS are severely debilitated and have few other treatment options, so the benefits are likely high relative to the risks. In particular, patients who are not candidates for resective epilepsy surgery and have few treatment options may benefit from RNS. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Supplemental Information

Clinical Input From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, input was received from 2 specialty medical societies (3 responses) and 5 academic medical centers (4 responses) when this policy was under development in 2014. There was consensus among reviewers that responsive neurostimulation is medically necessary for patients with partial epilepsy with 1 to 2 foci who are not candidates for resective epilepsy surgery.

Practice Guidelines and Position Statements
In 2013, guidelines on vagus nerve stimulation (VNS) on the treatment of epilepsy were issued by the American Academy of Neurology (AAN). The guidelines made the following recommendations: “VNS may be considered for seizures in children, for LSG [Lennox-Gastaut syndrome]-associated seizures, and for improving mood in adults with epilepsy (Level C). VNS may be considered to have improved efficacy over time (Level C). Children should be carefully monitored for site infection after VNS implantation.” AAN indicated that more information would be
needed on the treatment of primary generalized epilepsy in adults. Only 1 class II article addressed this population. The effectiveness of VNS should be studied in primary generalized syndromes. The RNS system was not mentioned in these guidelines.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 1.

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00572195a</td>
<td>RNS® System Long-term Treatment (LTT) Clinical</td>
<td>230</td>
<td>May 2018</td>
</tr>
<tr>
<td></td>
<td>Investigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02403843a</td>
<td>RNS® System Post-Approval Study in Epilepsy</td>
<td>375</td>
<td>May 2023</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

Denotes industry-sponsored or cosponsored trial.

References

Billing Coding/Physician Documentation Information

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61850</td>
<td>Twist drill or burr hole(s) for implantation of neurostimulator electrodes, cortical</td>
</tr>
<tr>
<td>61860</td>
<td>Craniectomy or craniotomy for implantation of neurostimulator electrodes, cerebral, cortical</td>
</tr>
<tr>
<td>61863</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation of neurostimulator electrode array in subcortical site (eg, thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of intraoperative microelectrode recording; first array</td>
</tr>
<tr>
<td>61864</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation of neurostimulator electrode array in subcortical site (eg,</td>
</tr>
</tbody>
</table>
thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of intraoperative microelectrode recording; each additional array (List separately in addition to primary procedure)

61880 Revision or removal of intracranial neurostimulator electrodes

61885 Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to a single electrode array

61886 Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to 2 or more electrode arrays

61888 Revision or removal of cranial neurostimulator pulse generator or receiver

95970 Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude, pulse duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient compliance measurements); simple or complex brain, spinal cord, or peripheral (ie, cranial nerve, peripheral nerve, sacral nerve, neuromuscular) neurostimulator pulse generator/transmitter, without reprogramming

95971 Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude, pulse duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient compliance measurements); simple spinal cord, or peripheral (ie, peripheral nerve, sacral nerve, neuromuscular) neurostimulator pulse generator/transmitter, with intraoperative or subsequent programming

L8680 Implantable neurostimulator electrode, each

L8686 Implantable neurostimulator pulse generator, single array, nonrechargeable, includes extension

L8688 Implantable neurostimulator pulse generator, dual array, nonrechargeable, includes extension

ICD-10 Codes:
G40.001-G40.219 Epilepsy and recurrent seizures, partial type, code range

There are no specific CPT codes for the insertion of this device. It would be reported with the CPT codes for insertion of a neurostimulator such as the following:

61850: Twist drill or burr hole(s) for implantation of neurostimulator electrodes, cortical

61860: Craniectomy or craniotomy for implantation of neurostimulator electrodes, cerebral, cortical

61863: Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation of neurostimulator electrode array in subcortical site (eg, thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of intraoperative microelectrode recording; first array
61864: each additional array (List separately in addition to primary procedure)
61880: Revision or removal of intracranial neurostimulator electrodes
61885: Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to a single electrode array
61886: with connection to 2 or more electrode arrays
61888: Revision or removal of cranial neurostimulator pulse generator or receiver
95970: Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude, pulse duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient compliance measurements); simple or complex brain, spinal cord, or peripheral (ie, cranial nerve, peripheral nerve, sacral nerve, neuromuscular) neurostimulator pulse generator/transmitter, without reprogramming
95971: simple spinal cord, or peripheral (ie, peripheral nerve, sacral nerve, neuromuscular) neurostimulator pulse generator/transmitter, with intraoperative or subsequent programming

Additional Policy Key Words

N/A

Policy Implementation/Update Information

8/1/15 New Policy. Considered Investigational.
8/1/16 No policy statement changes.
8/1/17 No policy statement changes.

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.