Dynamic Spinal Visualization

Policy

Blue Cross and Blue Shield of Kansas City (Blue KC) will not provide coverage for dynamic spinal visualization (digital motion x-ray, cineradiography, videofluoroscopy). This is considered investigational.

When Policy Topic is covered

Not Applicable

When Policy Topic is not covered

The use of dynamic spinal visualization is considered investigational.

Description of Procedure or Service

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With spinal</td>
<td>• Dynamic spinal visualization</td>
<td>• Conventional spinal imaging</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td>neck or back pain</td>
<td></td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
</tbody>
</table>

Dynamic spinal visualization is a general term addressing different imaging technologies, including digital motion x-ray and videofluoroscopy (also known as cineradiography) that allow the simultaneous visualization of movement of internal body structures such as the spine (vertebrae) with external body movement. These technologies have been proposed for the evaluation of spinal disorders including low back pain.

The evidence on dynamic spinal visualization in patients with back or neck pain includes comparisons of spine kinetics in patients with neck or back pain with healthy controls. Relevant outcomes are test accuracy, symptoms, morbid events, and functional outcomes. Techniques include digital motion x-rays, cineradiography/videofluoroscopy, or dynamic magnetic resonance imaging of the spine. No literature was identified on the diagnostic accuracy of this technology in a relevant population of patients. No evidence was identified on the effect of this
technology on symptoms or functional outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Background
Most spinal visualization methods use x-rays to create images either on film, video monitor, or computer screen. Digital motion x-ray involves the use of either film x-ray or computer-based x-ray ‘snapshots’ taken in sequence as a patient moves. Film x-rays are digitized into a computer for manipulation, while computer-based x-rays are automatically created in a digital format. Using a computer program, the digitized snapshots are then put in order and played on a video monitor, creating a moving image of the inside of the body. This moving image can then be evaluated by a physician alone or by using a computer that evaluates several aspects of the body’s structure, such as intervertebral flexion and extension, to determine the presence or absence of abnormalities.

Videofluoroscopy and cineradiography are different names for the same procedure, which uses a technique called fluoroscopy to create real-time video images of internal structures of the body. Unlike standard x-rays, which take a single picture at one point in time, fluoroscopy provides motion pictures of the body. The results of these techniques can be displayed on a video monitor as the procedure is being conducted, as well as recorded, to allow computer analysis or evaluation at a later time. Like digital motion x-ray, the results can be evaluated by a physician alone or with the assistance of computer analysis software.

Dynamic magnetic resonance imaging (MRI) is also being developed for imaging of the cervical spine. This technique uses an MRI-compatible stepless motorized positioning device (NeuroSwing, Fresenius/Siemens) and a real-time true fast imaging with steady-state precession (FISP) sequence to provide passive kinematic imaging of the cervical spine. The quality of the images is lower than a typical MRI sequence, but is proposed to be adequate to observe changes in the alignment of vertebral bodies, the width of the spinal canal, and the spinal cord. Higher-resolution imaging can be performed at the end positions of flexion and extension.

Rationale
This evidence review was created in 2006 and updated periodically using the MEDLINE database. The most recent literature update was performed through August 11, 2015.

At the time this review was created, the literature evaluating the clinical utility of dynamic spinal visualization techniques, including digital motion x-ray and cineradiography (videofluoroscopy) for the evaluation and assessment of the spine, was limited to a few studies involving small numbers of participants.\(^1\)\(^-\)\(^3\) No evidence was identified to indicate that clinical use improves health outcomes.

While there were reports of the correlation of this technique to disc degeneration,\(^4\) no studies had evaluated the incremental value of this information compared with
the standard evaluation. In addition, although some studies had shown that abnormalities in spinal motion are found in individuals with low back pain, particularly those with spondylolisthesis, the test did not always separate those with disease from those without disease.5

As of the most recent literature update, the evidence on dynamic spinal visualization remains predominantly of comparisons of spine kinetics in patients with neck or back pain with healthy controls. For example, Teyhen et al compared 20 patients with lower back pain with 20 healthy controls to provide construct validity for a clinical prediction rule that would identify patients likely to benefit from stabilization exercises,6 while Ahmadi et al used digital videofluoroscopy to compare 15 patients with lower back pain and 15 controls to assist in identifying better criteria for diagnosis of lumbar segmental instability.7 Breen et al reported on objective spinal motion imaging assessment in 30 healthy volunteers using a passive motion table and automated frame-to-frame registration of vertebral position.8 Another study used dynamic fluoroscopy to assess lateral flexion in 30 healthy controls, noting that data pooling from multiple studies would be needed to establish a complete database of reference limits from asymptomatic individuals.9

A feasibility study of dynamic magnetic resonance imaging was reported in 2012.10 This study used a prototype of the NeuroSwing positioning device and evaluated cervical spine kinematics in 32 patients who had previously undergone anterior cervical discectomy and fusion (ACDF). The quality of images was considered to be adequate, although there was some artifact from the titanium implants used in ACDF.

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in August 2015 did not identify any ongoing or unpublished trials that would likely influence this review.

Summary of Evidence
The evidence on dynamic spinal visualization in patients with back or neck pain includes comparisons of spine kinetics in patients with neck or back pain with healthy controls. Relevant outcomes are test accuracy, symptoms, morbid events, and functional outcomes. Techniques include digital motion x-rays, cineradiography/videofluoroscopy, or dynamic magnetic resonance imaging of the spine. No literature was identified on the diagnostic accuracy of this technology in a relevant population of patients. No evidence was identified on the effect of this technology on symptoms or functional outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Practice Guidelines and Position Statements
No guidelines or statements were identified.

U.S. Preventive Services Task Force Recommendations
Not applicable.
Medicare National Coverage

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

References

8. Breen AC, Muggleton JM, Mellor FE. An objective spinal motion imaging assessment (OSMIA); reliability, accuracy and exposure data. BMC Musculoskelet Disord. 2006;7:1. PMID 16393336

Billing Coding/Physician Documentation Information

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>76120</td>
<td>Cineradiography/videoradiography, except where specifically included</td>
</tr>
<tr>
<td>76125</td>
<td>Cineradiography/videoradiography to complement routine examination (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>76496</td>
<td>Unlisted fluoroscopic procedure (eg, diagnostic, interventional)</td>
</tr>
</tbody>
</table>

ICD-10 Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M54.5</td>
<td>Low back pain</td>
</tr>
</tbody>
</table>

Additional Policy Key Words

Digital Spinal Analysis (see 11/12/2012 email from B. Sitzmann)

Policy Implementation/Update Information

- 2/1/06 New policy; considered investigational.
- 2/1/07 No policy statement changes.
- 2/1/08 No policy statement changes.
- 2/1/09 No policy statement changes.
- 2/1/10 No policy statement changes.
- 2/1/11 No policy statement changes.
State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.