Intravitreal Corticosteroid Implants

Policy Number: 9.03.23 Last Review: 4/2019

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for Intravitreal Corticosteroid Implants when it is determined to be medically necessary because the criteria shown below are met.

When Policy Topic is covered
A fluocinolone acetonide intravitreal implant 0.59 mg (Retisert®) may be considered **medically necessary** for the treatment of:
- Chronic noninfectious intermediate, posterior, or panuveitis

A fluocinolone acetonide intravitreal implant 0.19 mg (Iluvien®) may be considered **medically necessary** for the treatment of:
- Diabetic macular edema in patients who have been previously treated with a course of corticosteroids and did not have a clinically significant rise in intraocular pressure.

A dexamethasone intravitreal implant 0.7 mg (ie, Ozurdex™) may be considered **medically necessary** for the treatment of:
- Noninfectious ocular inflammation, or uveitis, affecting the intermediate or posterior segment of the eye, OR
- Macular edema following branch or central retinal vein occlusion, OR
- Diabetic macular edema.

When Policy Topic is not covered
A fluocinolone acetonide intravitreal implant 0.59 mg (Retisert®) or 0.19 mg (Iluvien®) or dexamethasone intravitreal implant 0.7 mg (Ozurdex™) is considered **investigational** for the treatment of:
- Birdshot retinochoroidopathy
- Cystoid macular edema related to retinitis pigmentosa
- Idiopathic macular telangiectasia type 1
- Postoperative macular edema
- Circumscribed choroidal hemangiomas
- Proliferative vitreoretinopathy
- Radiation retinopathy.
All other uses of a corticosteroid intravitreal implant are considered investigational.

Considerations

An intravitreal implant, used according to the Food and Drug Administration–approved indications, may be an acceptable alternative in patients who are intolerant or refractory to other therapies or in patients who are judged likely to experience severe adverse events from systemic corticosteroids. Given the modest improvement in vision and the potential for adverse events, patients should be informed about the potential adverse effects of a corticosteroid intravitreal implant, including cataracts, increased intraocular pressure, or hypotony, endophthalmitis, and risk of need for additional surgical procedures. Because of the differing benefits and risks of treatment with intravitreal implants compared with systemic corticosteroid therapy or intraocular injections, patients should make an informed choice between treatments.

Insertion of intravitreal implants for drug delivery is usually reported with CPT code 67027 – Implantation of intravitreal drug delivery system (eg, ganciclovir implant), includes concomitant removal of vitreous. Insertion of the Ozurdex or Iluvien implant is done by injection and is reported with CPT code 67028 – Intravitreal injection of a pharmacologic agent (separate procedure).

The following HCPCS codes are available for the implants:
- J7311 Fluocinolone acetonide, intravitreal implant.
- J7312: Injection, dexamethasone, intravitreal implant, 0.1 mg
- J7313 Injection, fluocinolone acetonide, intravitreal implant, 0.01 mg

Description of Procedure or Service

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td></td>
<td></td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With chronic noninfectious</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>• Symptoms</td>
</tr>
<tr>
<td>intermediate or posterior</td>
<td>• Intravitreal fluocinolone</td>
<td>• Standard of care (systemic corticosteroids</td>
<td>• Change in disease status</td>
</tr>
<tr>
<td>uveitis</td>
<td>acetonide implant (0.59 mg)</td>
<td>and as needed immunosuppression)</td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals:</td>
<td></td>
<td></td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With noninfectious</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>• Symptoms</td>
</tr>
<tr>
<td>intermediate or posterior</td>
<td>• Intravitreal dexamethasone</td>
<td>• Observation alone</td>
<td>• Change in disease status</td>
</tr>
<tr>
<td>uveitis</td>
<td>implant (0.7 mg)</td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals:</td>
<td></td>
<td></td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With macular edema after</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>• Symptoms</td>
</tr>
<tr>
<td>retinal vein</td>
<td>• Intravitreal dexamethasone</td>
<td>• Observation alone</td>
<td>• Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combination with</td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>With macular edema after retinal vein occlusion</td>
<td>Intravitreal fluocinolone acetonide implant (0.59 mg)</td>
<td>Observation alone</td>
<td>Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment-related morbidity</td>
</tr>
<tr>
<td>With refractory (persistent or recurrent) diabetic macular edema</td>
<td>Intravitreal fluocinolone acetonide implant (0.59 mg)</td>
<td>Standard of care (as needed laser or observation)</td>
<td>Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment-related morbidity</td>
</tr>
<tr>
<td>With diabetic macular edema</td>
<td>Intravitreal dexamethasone implant (0.7 mg)</td>
<td>Observation alone</td>
<td>Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment-related morbidity</td>
</tr>
<tr>
<td>With diabetic macular edema</td>
<td>Intravitreal dexamethasone implant (0.7 mg) plus anti-vascular endothelial growth factor therapy</td>
<td>Anti-vascular endothelial growth factor therapy alone</td>
<td>Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment-related morbidity</td>
</tr>
<tr>
<td>With diabetic macular edema</td>
<td>Intravitreal dexamethasone implant (0.7 mg) plus laser photocoagulation</td>
<td>Laser photocoagulation alone</td>
<td>Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quality of life</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>With age-related macular degeneration</td>
<td>Intravitreal dexamethasone implant (0.7 mg) plus anti-vascular endothelial growth factor therapy</td>
<td>Anti-vascular endothelial growth factor therapy alone</td>
<td>Symptoms, Change in disease status, Functional outcomes, Quality of life, Treatment-related morbidity</td>
</tr>
<tr>
<td>With birdshot retinochoroidopathy refractory or intolerant to standard therapy</td>
<td>Intravitreal flucicinolone acetonide implant (0.59 mg) Intravitreal dexamethasone implant (0.7 mg)</td>
<td>Standard of care</td>
<td>Symptoms, Change in disease status, Functional outcomes, Quality of life, Treatment-related morbidity</td>
</tr>
<tr>
<td>With cystoid macular edema related to retinitis pigmentosa</td>
<td>Intravitreal dexamethasone implant (0.7 mg)</td>
<td>Standard of care</td>
<td>Symptoms, Change in disease status, Functional outcomes, Quality of life, Treatment-related morbidity</td>
</tr>
<tr>
<td>With idiopathic macular telangiectasia type 1</td>
<td>Intravitreal dexamethasone implant (0.7 mg)</td>
<td>Standard of care</td>
<td>Symptoms, Change in disease status, Functional outcomes, Quality of life, Treatment-related morbidity</td>
</tr>
<tr>
<td>With postoperative chronic macular edema</td>
<td>Intravitreal dexamethasone implant (0.7 mg)</td>
<td>Standard of care</td>
<td>Symptoms, Change in disease status, Functional outcomes, Quality of life, Treatment-related morbidity</td>
</tr>
<tr>
<td>With circumscribed choroidal hemangiomas</td>
<td>Intravitreal dexamethasone implant (0.7 mg) plus photodynamic therapy</td>
<td>Standard of care</td>
<td>Symptoms, Change in disease status, Functional outcomes, Quality of life, Treatment-related morbidity</td>
</tr>
</tbody>
</table>
With proliferative vitreoretinopathy

- Intravitreal dexamethasone implant (0.7 mg)

Inclusion:
- Symptoms
- Change in disease status
- Functional outcomes
- Quality of life
- Treatment-related morbidity

Individuals:
- With radiation retinopathy

Interventions of interest:
- Intravitreal dexamethasone implant (0.7 mg)

Comparators of interest:
- Standard of care

Relevant outcomes:
- Symptoms
- Change in disease status
- Functional outcomes
- Quality of life
- Treatment-related morbidity

An intravitreal implant is a drug delivery system, injected or surgically implanted in the vitreous of the eye, for sustained release of drug to the posterior and intermediate segments of the eye. Three intravitreal corticosteroid implants, ie, fluocinolone acetonide 0.59 mg (Retisert), fluocinolone acetonide 0.19 mg (Iluvien), and dexamethasone 0.7 mg (Ozurdex) are reviewed herein.

Fluocinolone acetonide implants are nonerodible and deliver drug up to 30 to 36 months while dexamethasone implants are bioerodible and last up to 6 months.

Uveitis

For individuals with chronic noninfectious intermediate or posterior uveitis who receive an intravitreal fluocinolone acetonide implant (0.59 mg), the evidence includes 4 randomized controlled trials (RCTs). Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Two of the 4 RCTs compared 2 doses of implants and 2 trials compared implants with systemic steroids (and immunosuppression when indicated). All trials supported the efficacy of intravitreal fluocinolone acetonide implants in preventing recurrence and improving visual acuity over 4-year follow-up. The head-to-head trial comparing implants with systemic corticosteroids did not show substantial superiority in the overall effectiveness of either approach.

After 24 and 54 months of follow-up, visual acuity improved from baseline in the implant groups compared to the systematic therapy groups by +6.0 and +3.2 letters (p=0.16) and +2.4 and 3.1 letters (p=0.073), respectively. However, nearly all phakic patients receiving implants developed cataracts and required cataract surgery. Further, most also developed glaucoma, with 75% of patients requiring intraocular pressure (IOP)-lowering medications and 35% requiring filtering surgeries. Systemic adverse events such as hyperlipidemia, diabetes, osteoporosis, fractures, and blood count/chemistry abnormalities were infrequent and not statistically distinguishable between groups. The incidence of hypertension was greater in the systemic therapy group (27%) compared to the implant group (13%), but rates of antihypertensive treatment initiation did not differ. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
For individuals with noninfectious intermediate or posterior uveitis who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes 1 RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Results of this trial at 8 weeks showed that the implant was effective in reducing inflammation (the proportion of eyes with no inflammation was 47% and 12% with implant and sham, respectively) and resulted in clinically meaningful improvement in vision at week 8 compared to sham controls (the proportion of patients with a gain of ≥15 letters in best-corrected visual acuity [BCVA] from baseline was ≈40% with implants and 10% with sham). Further, at week 26, patients treated with implants reported meaningful increases in vision-related functioning. The major limitation of this trial was its lack of long-term follow-up. Use of implants resulted in higher incidences of cataracts and elevated IOP. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Macular Edema
For individuals with macular edema after retinal vein occlusion who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes 2 RCTs. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Compared to sham controls, implants resulted in clinically meaningful improvements in visual acuity within 1 to 3 months postimplant and improvement in vision occurred faster. The difference in the proportion of patients with gain of 15 or more letters in BCVA from baseline was more than 10% in favor implants versus sham in both studies at 30, 60 and 90 days, but not at 180 days postimplant. Use of implants resulted in higher incidences of cataracts and elevated IOP. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with macular edema after retinal vein occlusion who receive an intravitreal fluocinolone acetonide implant (0.59 mg), no studies were identified. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Diabetic Macular Edema
For individuals with refractory (persistent or recurrent) diabetic macular edema (DME) who receive an intravitreal fluocinolone acetonide implant (0.59 mg), the evidence includes 1 RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Compared to standard of care (as needed laser or observation), a greater proportion of patients with implants reported clinically significant improvement in vision at 6 months (1.4% vs 16.8% respectively) and subsequent time points assessed but not at or beyond 30 months of follow-up. Ninety percent of patients with phakic eyes who received implants required cataract surgery and 60% developed elevated IOP. Due to the substantial increase in adverse events and availability of agents with safer tolerability profiles (eg, anti-vascular endothelial

Intravitreal Corticosteroid Implants 9.03.23
growth factor [anti-VEGF] inhibitors), implant use in DME is questionable. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with DME who receive an intravitreal fluocinolone acetonide implant (0.19 mg), the evidence includes 2 RCTs. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Implant-treated eyes showed in clinically meaningful improvements in vision at 2 and 3 years postimplant. The percentage of patients who gained 15 letters or more was 28.7% in the implant group versus 18.9% in the sham group at 3 years. Subgroup analysis showed greater improvements in visual acuity in patients who were pseudophakic compared to those who were phakic (difference in mean change in number of letters at 2 years from baseline was 5.6 letters in pseudophakic patients vs 1 letter in phakic patients). A major limitation of these implants is that nearly 80% all phakic patients will develop cataracts and will require cataract surgery. Further, IOP was elevated in 34% of patients who received this implant compared with 10% of controls. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with DME who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes 3 RCTs. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Compared to sham control, 2 identically designed RCTs showed clinically meaningful improvements in vision with dexamethasone implants that peaked at 3 months and maintained 39 months (with retreatment). The difference in proportion of patients with a gain of 15 or more letters in BCVA from baseline was 9.3% and 13.0% in the 2 trials, respectively, favoring implant versus sham at 39 months postimplant. Subgroup analysis of these trials showed greater improvements in visual acuity in patients who were pseudophakic compared to those who were phakic. Results of 1 small RCT showed that, compared to bevacizumab, implant-treated patients at 1 year had similar improvement rates on the primary end point, but experienced greater rates of vision loss (0% vs 10.9%), greater frequency of side effects such as cataracts (4.8% vs 13%), and elevated IOP (0% vs 19.6%), all respectively. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with DME who receive an intravitreal dexamethasone implant (0.7 mg) plus anti-VEGF therapy, the evidence includes 1 RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. One small RCTs with a 1-year follow-up demonstrated that combination implants plus bevacizumab compared to bevacizumab alone resulted in similar gain in visual acuity (5.4 letters vs 4.9 letters), but greater frequency of side effects with combined treatment. Use of dexamethasone implants resulted in higher incidence of cataracts and elevated IOP. A larger RCT with adequate power is needed to confirm these findings. The use of dexamethasone implant resulted in higher incidence of cataract and
elevated IOP. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with DME who receive an intravitreal dexamethasone implant (0.7 mg) plus laser photocoagulation, the evidence includes 1 RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. One RCT with 1-year follow-up demonstrated that combination implants plus laser photocoagulation compared to laser photocoagulation alone resulted in better visual acuity (as measured by gain of ≥10 letters) at 9 months but not at 12 months. However, the generally acceptable standard outcome measure for change is 15 or more letters and it was not used in this trial. The use of dexamethasone implants resulted in higher incidences of cataracts and elevated IOP. Further, a differential loss to follow-up, lack of power calculations for sample size estimation, and lack of intention-to-treat analysis preclude interpretation of results. A larger RCT with adequate power is needed to confirm these findings. The evidence is insufficient to determine the effects of the technology on health outcomes.

Age-Related Macular Degeneration

For individuals with age-related macular degeneration who receive an intravitreal dexamethasone implant (0.7 mg) plus anti-VEGF inhibitor, the evidence includes 1 RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Results of this trial did not demonstrate clinically meaningful reductions in the ranibizumab injection-free interval between combined treatments (34 days) and anti-VEGF alone (29 days; \(p=0.016 \)). Further, IOP was elevated in a greater proportion of patients receiving implants without any additional clinical benefit. More patients in the dexamethasone implant group had increased IOP, but there were no between-group differences in cataracts-related events. The evidence is insufficient to determine the effects of the technology on health outcomes.

Other Conditions

For individuals with birdshot retinochoroidopathy refractory or intolerant to standard therapy who receive an intravitreal fluocinolone acetonide implant (0.59 mg) or intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple observational studies. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Multiple observational studies have noted improvements in anatomic and visual acuity outcomes. Long-term follow-up for efficacy and safety is limited. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in refractory or intolerant patients with birdshot retinopathy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with cystoid macular edema related to retinitis pigmentosa who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple case reports. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Case reports have noted mix results for anatomic and visual acuity outcomes. Long-term follow-
up for efficacy and safety is limited. Larger RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with cystoid macular edema related to retinitis pigmentosa. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with idiopathic macular telangiectasia type 1 who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple case reports. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Case reports have noted mix results for visual acuity and inflammation-related outcomes. Long-term follow-up for efficacy and safety is limited. Better quality studies with long-term follow-up are needed to permit conclusions on the efficacy of corticosteroid implants in patients with idiopathic macular telangiectasia type 1. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with postoperative chronic macular edema who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple observational studies. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Of multiple observational studies, 1 large retrospective analysis of 100 patients showed that 2 of every 5 patients experienced clinically meaningful improvements in vision at 1-year follow-up. An RCT is needed to confirm the efficacy of corticosteroid implants in patients with postoperative chronic macular edema. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with circumscribed choroidal hemangiomas who receive an intravitreal dexamethasone implant (0.7 mg) plus photodynamic therapy, the evidence includes a 1 case report. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Results of the case report do not permit conclusions about the efficacy and safety of adding dexamethasone implants for circumscribed choroidal hemangiomas to photodynamic therapy. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with circumscribed choroidal hemangiomas. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with proliferative vitreoretinopathy who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes 1 case series and 1 case report. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. These studies have reported multiple interventions, including dexamethasone implants in conjunction with surgery and laser for preventing proliferative retinopathy after retinal detachment surgery. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with proliferative retinopathy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with radiation retinopathy who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple observational
studies. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Multiple observational studies have noted improvements in anatomic and visual acuity outcomes. Long-term follow-up for efficacy and safety is limited. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with radiation retinopathy. The evidence is insufficient to determine the effects of the technology on health outcomes.

Background

Uveitis

Uveitis encompasses various conditions, of infectious and noninfectious etiologies, that are characterized by inflammation of any part of the uveal tract of the eye (iris, ciliary body, choroid). Infectious etiologies include syphilis, toxoplasmosis, cytomegalovirus retinitis, and candidiasis. Noninfectious etiologies include sarcoidosis, Behçet syndrome, and “white dot” syndromes such as multifocal choroiditis or “birdshot” chorioretinopathy. Uveitis may be idiopathic, have a sudden or insidious onset, a duration that is limited (<3 months) or persistent, and a course that may be acute, recurrent, or chronic.

The classification scheme recommended by the Uveitis Study Group and the Standardization of Uveitis Nomenclature Working Group is based on anatomic location. Patients with anterior uveitis typically develop symptoms such as light sensitivity, pain, tearing, and redness of the sclera. In posterior uveitis, which comprises approximately 5% to 38% of all uveitis cases in the United States, the primary site of inflammation is the choroid or retina (or both). Patients with intermediate or posterior uveitis typically experience minimal pain, decreased visual acuity, and the presence of floaters (bits of vitreous debris or cells that cast shadows on the retina). Chronic inflammation associated with posterior segment uveitis can lead to cataracts, glaucoma, and structural damage to the eye, resulting in severe and permanent vision loss.

Treatment

The primary goal of therapy for uveitis is to preserve vision. Noninfectious uveitis typically responds well to corticosteroid treatment. Immunosuppressive therapy (eg, antimetabolites, alkylating agents, T-cell inhibitors, tumor necrosis factor inhibitors) may also be used to control severe uveitis. Immunosuppressive therapy is typically reserved for patients who require chronic high-dose systemic steroids to control their disease. While effective, immunosuppressants may have serious and potentially life-threatening adverse effects, including renal and hepatic failure and bone marrow suppression.

Macular Edema After Retinal Vein Occlusion

Retinal vein occlusions are classified by whether the central retinal vein or one of its branches is obstructed. Central retinal vein occlusion (CRVO) and branch retinal vein occlusion (BRVO) differ in pathophysiology, clinical course, and therapy. CRVOs are categorized as ischemic or nonischemic. Ischemic CRVOs are referred to as severe, complete, or total vein obstruction, and account for 20% to 25% of all CRVOs. Macular edema and permanent macular dysfunction occur in virtually
all patients with ischemic CRVO, and in many patients with nonischemic CRVO. BRVO is a common retinal vascular disorder in adults between 60 and 70 years of age and occurs approximately 3 times more often than CRVO.

Treatment
Intravitreal injections of triamcinolone are used to treat macular edema associated with CRVO, with a modest beneficial effect on visual acuity. The treatment effect lasts about 6 months, and repeat injections may be necessary. Cataracts are a common side effect, and steroid-related pressure elevation occurs in about one-third of patients, with 1% requiring filtration surgery.

Macular photocoagulation with grid laser improves vision in BRVO but is not recommended for CRVO. Although intravitreal injections of triamcinolone have also been used for BRVO, the serious adverse events have stimulated the evaluation of new treatments, including intravitreal steroid implants or the intravitreal injection of antivascular endothelial growth factor.

Diabetic Macular Edema
Diabetic retinopathy is a common microvascular complication of diabetes and a leading cause of blindness in adults. The 2 most serious complications for vision are diabetic macular edema (DME) and proliferative diabetic retinopathy. At its earliest stage (nonproliferative retinopathy), microaneurysms occur. As the disease progresses, blood vessels that nourish the retina are blocked, triggering the growth of new and fragile blood vessels (proliferative retinopathy). Severe vision loss with proliferative retinopathy arises from leakage of blood into the vitreous. DME is characterized by swelling of the macula due to gradual leakage of fluids from blood vessels and breakdown of the blood-retinal barrier. Moderate vision loss can arise from the fluid accumulating in the center of the macula (macular edema) during the proliferative or nonproliferative stages of the disease. Although proliferative disease is the main blinding complication of diabetic retinopathy, macular edema is more frequent and is the leading cause of moderate vision loss in people with diabetes.

Treatment
Tight glycemic and blood pressure control is the first line of treatment to control diabetic retinopathy, followed by laser photocoagulation for patients whose retinopathy is approaching the high-risk stage. Although laser photocoagulation is effective at slowing the progression of retinopathy and reducing visual loss, it does not restore lost vision. Alternatives to intravitreal implants include intravitreal injection of triamcinolone acetonide, which is used as off-label adjunctive therapy for DME. Angiostatic agents such as injectable vascular endothelial growth factor inhibitors, which block stages in the pathway leading to new blood vessel formation (angiogenesis), have demonstrated efficacy in DME.

Age-Related Macular Degeneration
Age-related macular degeneration is a degenerative disease of the retina that results in loss of central vision with increasing age. Two different forms of degeneration, known as dry and wet, may be observed. The dry form (also known
atrophic or areolar) is more common and is often a precursor to the wet form (also known as exudative neovascular or disciform). The wet form is more devastating and characterized by serous or hemorrhagic detachment of the retinal pigment epithelium and development of choroidal neovascularization, which greatly increases the risk of developing severe irreversible loss of vision. Choroidal neovascularization is categorized as classic or occult.

Treatment
Effective specific therapies for exudative or wet age-related macular degeneration are an intravitreous injection of a vascular endothelial growth factor inhibitor, possibly thermal laser photocoagulation (in selected patients), and photodynamic therapy.

Intravitreal Implants
Intravitreal implants deliver a continuous concentration of a pharmacologic agent to the eye over a prolonged period. The goal of therapy is to reduce inflammation in the eye while minimizing the adverse events of the therapeutic regimen.

Selection of the route of corticosteroid administration (topical, systemic, periocular, or intraocular injection) is based on the cause, location, and severity of the disease. Each therapeutic approach has drawbacks. For example, topical corticosteroids require frequent (eg, hourly) administration and may not adequately penetrate the posterior segment of the eye due to their poor ability to penetrate ocular tissues. Systemically administered drugs penetrate poorly into the eye because of the blood-retinal barrier, and high-dose or long-term treatments may be necessary. Long-term systemic therapies can be associated with substantial adverse events such as hypertension and osteoporosis, while repeated (every 4-6 weeks) intraocular corticosteroid injections may result in pain, intraocular infection, globe perforation, fibrosis of the extraocular muscles, reactions to the delivery vehicle, increased intraocular pressure, and cataract development.

Corticosteroid implants are biodegradable or nonbiodegradable. Nonbiodegradable systems are thought to be preferable for treating chronic, long-term disease, while biodegradable products may be preferred for conditions that require short-term therapy. Although the continuous local release of steroid with an implant may reduce or eliminate the need for intravitreal injections and/or long-term systemic therapy, insertion or surgical implantation of the device carries risks, and the device could increase ocular toxicity due to increased corticosteroid concentrations in the eye over a longer duration. With any route of administration, cataracts are a frequent complication of long-term corticosteroid therapy.

Intraocular corticosteroid implants being evaluated include:

- Retisert (nonbiodegradable fluocinolone acetonide intravitreal implant; Bausch & Lomb) is a sterile implant that consists of a tablet containing fluocinolone acetonide 0.59 mg, a synthetic corticosteroid that is less soluble in aqueous solution than dexamethasone. The tablet is encased in a silicone elastomer cup
with a release orifice and membrane; the entire elastomer cup assembly is attached to a suture tab. Following implantation (via pars plana incision and suturing) in the vitreous, the implant releases the active drug at a rate of 0.3 to 0.4 μg/d over 2.5 years.

- **ILUVIEN** (nonbiodegradable injectable intravitreal implant with fluocinolone acetonide; Alimera Sciences) is a rod-shaped device made of polyimide and polyvinyl alcohol. It is small enough to be placed using a 25-gauge applicator. It is expected to provide sustained delivery of fluocinolone acetonide for up to 3 years.

- **Ozurdex** (previously known as Posurdex; biodegradable dexamethasone intravitreal implant; Allergan, Irvine, CA) is composed of a biodegradable copolymer of lactic acid and glycolic acid with micronized dexamethasone. This implant is placed into the vitreous cavity through the pars plana using a customized, single-use, 22-gauge applicator. The implant provides intravitreal dexamethasone for up to 6 months. The mean number of Ozurdex injections reported in the literature is 4.2 injections per year, and more than 6 consecutive injections have been reported.\(^1,2\).

Regulatory Status

In 2009, Ozurdex® (dexamethasone 0.7 mg intravitreal implant; Allergan) was approved by the U.S. Food and Drug Administration for the treatment of macular edema following BRVO or CRVO. Subsequently, in September 2010, the indication was expanded to include treatment of noninfectious uveitis affecting the segment of the eye. In 2014, the indication was again expanded to include treatment of DME.

In September 2014, Iluvien® (fluocinolone acetonide 0.19 mg intravitreal implant; Alimera Sciences) was approved by the Food and Drug Administration for the treatment of DME in patients previously treated with a course of corticosteroids and without a clinically significant rise in intraocular pressure.

In November 2014, Retisert™ (fluocinolone acetonide 0.59 mg intravitreal implant; Bausch & Lomb) was approved by the Food and Drug Administration for the treatment of chronic noninfectious uveitis affecting the posterior segment of the eye.

Rationale

This evidence review was created in June 2010 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through January 8, 2018.

Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens;
and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Noninfectious Uveitis

Intravitreal Fluocinolone Acetonide Implant (0.59 mg)

Pivotal Trials
Two double-blind, randomized trials were conducted in patients with chronic (≥1-year history) noninfectious uveitis affecting the posterior segment of one or both eyes. The primary efficacy end point in both trials was the rate of recurrence of uveitis. These trials randomized patients to a fluocinolone acetonide 0.59-mg or 2.1-mg implant. In 2004, the Food and Drug Administration (FDA) approved only the 0.59-mg dose, and its approval was based on a comparison of rates of recurrence of uveitis affecting the posterior segment of the study eye in the 34-week period postimplantation compared with the rates of recurrence in the 34-week period preimplantation. Data from 224 patients were included. Subsequently, FDA reported recurrence rates 1, 2, and 3 years postimplantation. Results are summarized in Table 1.

Table 1. Summary of Results From the FDA Pivotal Trial in Noninfectious Posterior Uveitis

<table>
<thead>
<tr>
<th>Time Point</th>
<th>Uveitis Recurrence Rates, n (%)</th>
<th>Study 1 (n=108)</th>
<th>Study 2 (n=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 weeks preimplant</td>
<td>58 (53.7)</td>
<td>46 (39.7)</td>
<td></td>
</tr>
<tr>
<td>34 weeks postimplant</td>
<td>2 (1.8)</td>
<td>15 (12.9)</td>
<td></td>
</tr>
<tr>
<td>1 year postimplant</td>
<td>4 (3.7)</td>
<td>15 (12.9)</td>
<td></td>
</tr>
<tr>
<td>2 years postimplant</td>
<td>11 (10.2)</td>
<td>16 (13.8)</td>
<td></td>
</tr>
<tr>
<td>3 years postimplant</td>
<td>22 (20.4)</td>
<td>20 (17.2)</td>
<td></td>
</tr>
<tr>
<td>3 years postimplant</td>
<td>33 (30.6)</td>
<td>28 (24.1)</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Bausch & Lomb (2012).

FDA: Food and Drug Administration.

Recurrence of uveitis for all postimplantation time points was compared with the 34-week preimplantation time point.

p < 0.01.
Results presented include imputed recurrences. Recurrences were imputed when a subject was not seen within 10 weeks of his or her final scheduled visit.

Results of one of the pivotal trials were reported by Jaffe et al (2006). These trials are not discussed in detailed because the comparator was a nonapproved dose of fluocinolone acetonide. Briefly, the 2 trials randomized 278 patients and 239 patients to a fluocinolone acetonide 0.59-mg or 2.1-mg implant, respectively. Pooled data from both doses in the first trial showed a reduction in recurrence rates in implanted eyes compared with an increase in recurrence in nonimplanted eyes. An increase (≥6 mm Hg) in intraocular pressure (IOP) and cataracts were observed in implanted eyes compared with nonimplanted eyes. The second trial was reported only in FDA documents and results were similar to the first trial.

Additional Randomized Controlled Trials

Pavesio et al (2010) reported on results of an industry-sponsored, open-label trial in which 140 patients with chronic noninfectious posterior uveitis were randomized to the fluocinolone acetonide 0.59-mg implant (n=66) or systemic corticosteroid therapy (and immunosuppression when indicated; n=74). To be included in the trial, subjects had to have at least a 1-year history of recurrent uveitis. The primary efficacy outcome was time to the first recurrence of uveitis. Patients in whom tapering of adjunctive anti-inflammatory therapy was insufficient despite receiving the implant were referred to as imputed or inferred failures. Results were therefore presented as both true recurrences and true plus inferred recurrences. When inferred recurrences were censored (11 subjects removed from the at-risk population), Kaplan-Meier analysis showed a significant decrease in the time to uveitis recurrence (6.3 months for 12 failures vs 7.0 months for 44 failures). When all subjects were included in the analysis, time to uveitis recurrence did not differ statistically (p=0.07). The relative risk (RR) of recurrence of uveitis was reduced by 71% with implants compared with standard therapy (RR=0.29; 95% confidence interval [CI], 0.14 to 0.59; 132 eyes). Secondary efficacy outcomes included visual acuity improvement. Visual acuity in the implant group decreased after the surgery and again in the 15- to 18-month interval as a result of cataracts, then returned to baseline levels at 24 months, following extraction of cataracts. Visual acuity in the systemic corticosteroid group remained consistent over the 2-year study.

The Multicenter Uveitis Steroid Treatment Trial (2010), sponsored by the National Eye Institute, is a partially blind RCT (N=255) designed to compare visual acuity at 2 years using fluocinolone acetonide implants with systemic corticosteroid therapy (and immunosuppression when indicated) in patients with intermediate, posterior, or panuveitis. Assessment of the primary outcome measure of best-corrected visual acuity (BCVA) using the Early Treatment Diabetic Retinopathy Study (ETDRS) chart was blinded. After 24 and 54 months of follow-up, the vision improvements from baseline in the implant groups compared with systematic therapy group were not statistically significant (+6.0 and +3.2 letters, p=0.16; +2.4 and +3.1 letters; p=0.073, respectively). Notably, approximately 21% of patients in the systemic group had received an implant by 54 months. At 24 and 54 months, the proportion of patients with a minimally important
improvement did not differ significantly for any of the quality of life metrics (results not shown). Patients receiving systemic therapy (in which corticosteroid-sparing immunosuppressive therapy was used to minimize ongoing use of prednisone to <10 mg/d for the large majority of patients) was associated with relatively little additional systemic morbidity compared with implant therapy. Systemic adverse events were infrequent in both groups. At 2 years, the proportion of patients with systolic blood pressure greater than 140 mm Hg or diastolic blood pressure greater than 90 mm Hg at any visit was lower in the implant group than in the systemic group (13% vs 27%; hazard ratio, 0.44; p=0.030), but the rate of antihypertensive treatment initiation did not differ substantially between the 2 groups (5% vs 11%; hazard ratio, 0.40; p=0.13), respectively. The incidences of other systemic adverse events, including hyperlipidemia, diabetes, osteoporosis, fractures, and blood count/chemistry abnormalities, were not statistically distinguishable between groups (data not shown). Weight was stable over time in both groups.

Systematic Reviews
Brady et al (2016) reported on results of a Cochrane review of RCTs comparing fluocinolone acetonide or dexamethasone intravitreal implants with standard therapy in patients who had at least 6 months of follow-up posttreatment. The primary outcome was a recurrence of uveitis. Selected trials enrolled patients of all ages who had chronic noninfectious posterior uveitis, intermediate uveitis, or panuveitis with vision that was “better than hand motion.” Two trials, Pavesio et al (2010) and Kempen et al (2011), were included and judged to be of moderate quality (both are discussed above). Because the 2 trials were designed to answer different questions (one measured recurrence, one visual acuity), reviewers did not combine efficacy data. However, they did perform a meta-analysis of common side effects, which showed increased risks of needing cataract surgery (RR=2.98; 95% CI, 2.33 to 3.79; 371 eyes) and surgery to lower IOP (RR=7.48; 95% CI, 3.94 to 14.19; 599 eyes) in the implant group compared with the standard therapy group through 2 years of follow-up. Reviewers were unable to conclude that the implants were superior to traditional systemic therapy for the treatment of noninfectious uveitis.

Adverse Events
As listed in the prescribing label, nearly all phakic patients who receive implants are expected to develop cataracts and require cataract surgery. Further, 75% of patients may experience elevated IOP and/or glaucoma severe enough to require IOP-lowering medications and 35% filtering surgeries. Separation of implant components is another potential complication, and 6-year cumulative risk of a spontaneous dissociation is 4.8% (95% CI, 2.4% to 9.1%). Late-onset endophthalmitis is also a recognized as a surgical complication of intraocular implants.

Section Summary: Intravitreal Fluocinolone Acetonide Implant (0.59 mg) for Noninfectious Uveitis
Four RCTs have established the efficacy of fluocinolone acetonide implants (0.59 mg) for patients with noninfectious intermediate or posterior uveitis. Two of the 4
RCTs compared 2 doses of implants, and 2 trials compared implants with systemic steroids (and immunosuppression when indicated). All trials supported the efficacy of fluocinolone acetonide intravitreal implants in preventing recurrence and improving vision over a 4-year follow-up. The head-to-head trial comparing implants with systemic corticosteroids did not show substantial superiority in the overall effectiveness of either approach. The major limitation of these implants is nearly all phakic patients will develop cataracts and will require cataract surgery. Further, most will also develop glaucoma, with 75% patients requiring IOP-lowering medications and 35% requiring filtering surgeries.

Intravitreal Dexamethasone Implant (0.7 mg)

The evidence for dexamethasone intravitreal implants consists of a pivotal, double-blind RCT (HURON). In this 8-week, manufacturer-sponsored, multicenter trial (46 study sites in 18 countries), 229 patients with noninfectious intermediate or posterior uveitis were randomized to 0.7-mg implants (n=77), 0.35-mg implants (n=76), or sham procedure (n=76). The primary outcome measure was the proportion of eyes with a vitreous haze score of 0 (no inflammation) at week 8. At baseline, the mean vitreous haze score was approximately +2 (moderate blurring of the optic nerve head). At 8 weeks posttreatment, the proportion of eyes with a vitreous haze score of 0 was 47% with the 0.7-mg implant and 12% with the sham procedure. At 8 weeks, visual acuity, as assessed by a gain of 15 or more letters in BCVA from baseline, was achieved by 40% of patients who received implants compared with 10% who received sham control. The incidences of elevated IOP (≥25 mm Hg) and cataracts in phakic eyes were higher in 0.7-mg implant-treated eyes vs sham control eyes (7.1% vs 4.2% and 15% vs 7%, respectively). Unlike the fluocinolone acetonide 0.59-mg implant, the long-term efficacy and safety data for the dexamethasone 0.7-mg implant are not available. Lightman et al (2013) reported on 26-week data for vision-related functioning using National Eye Institute-Visual Function Questionnaire from HURON trial. Using the distribution- and anchor-based methods, the authors reported that a clinically meaningful change for the National Eye Institute-Visual Function Questionnaire-25 composite score was 3.86 and 10 points, respectively. Others have reported that range changes of 2.3 to 3.8 units in the composite score are meaningful. In the HURON trial, the proportion of patients with a 5 or more point improvement in the composite score at week 26 was 58% (42/73) in the 0.7-mg implant group and 32% (24/74) in the sham-controlled arm (p<0.05).

Adverse Events

As listed in the prescribing label, in controlled studies, the most common adverse reactions reported by 20% to 70% of patients were cataracts, increased IOP, and conjunctival hemorrhage.

Section Summary: Intravitreal Dexamethasone Implant (0.7 mg) for Noninfectious Uveitis

One RCT comparing 2 doses of implants with sham control has supported the efficacy of dexamethasone implants (0.7 mg) for patients with noninfectious intermediate or posterior uveitis. Results of this trial have demonstrated the
efficacy of the dexamethasone 0.7-mg implant in reducing inflammation and resulted in clinically meaningful improvements in the vision at week 8 compared with sham controls. Further, at week 26, patients treated with implants reported meaningful improvements in vision-related functioning. The major limitation of this trial was its lack of long-term follow-up. Further, as a class effect, use of dexamethasone implants resulted in higher incidences of cataracts and elevated IOP.

Macular Edema After Retinal Vein Occlusion

The American Academy of Ophthalmology published a technology assessment (2015) on therapies for macular edema associated with central retinal vein occlusion.12 The Academy identified 4 clinical trials that provided level I evidence supporting the use of antivascular endothelial growth factor (anti-VEGF) pharmacotherapies and 2 clinical trials providing level I evidence for intravitreal corticosteroid injection with the dexamethasone intravitreal implants or triamcinolone. Evidence on the safety and efficacy of other reported interventions was of lesser strength. The assessment noted that evidence on the long-term efficacy of corticosteroid treatments is limited and that intravitreal corticosteroids led to a higher frequency of adverse events, including cataracts and IOP elevation compared with anti-VEGF treatments. There are limited data on combination therapy with anti-VEGF and corticosteroid injections compared with monotherapy.

A Bayesian network meta-analysis of the efficacy and safety of treatments for macular edema secondary to branch retinal vein occlusion was published in 2015.18 Eight RCTs (total N=1743 patients) were included; patients were treated with ranibizumab as needed, aflibercept monthly, dexamethasone implant, laser photocoagulation, ranibizumab plus laser, or sham intervention. The probability of being the most efficacious treatment, based on letters gained, or for a gain of 15 letters or more, was highest for monotherapy of anti-VEGF treatments (30%-54% probability), followed by ranibizumab plus laser, and lowest (0%-2% probability) for the dexamethasone implant, laser, or sham treatment. Treatment with ranibizumab resulted in an average increase of 8 letters compared with the dexamethasone implant. Patients treated with the dexamethasone implant had statistically significant higher rates of ocular hypertension than patients given anti-VEGF monotherapy (odds ratio, 13.1).

Intravitreal Dexamethasone Implant (0.7 mg)

Data presented to FDA for the dexamethasone intravitreal implant (Ozurdex) were from two, 6-month, double-masked RCTs called GENEVA (167 clinical sites in 24 countries).1,19 A 6-month open-label extension of these 2 pivotal trials was reported in 2011.2 A total of 1267 patients who had clinically detectable macular edema associated with either central retinal vein occlusion or branch retinal vein occlusion were randomized to a single treatment with a dexamethasone 0.7-mg implant (n=427), dexamethasone 0.35-mg implant (n=414), or sham control (n=426). The primary outcome measure was time to achieve a 15-or-more letter improvement in BCVA. A secondary outcome was the proportion of eyes achieving a 15-or-more letter improvement from baseline at 180 days. In individual studies and pooled analysis, time to achieve a 15-or-more letter (3-line) improvement in
BCVA was significantly faster with implants than with sham (p<0.01) (data not shown). As evident from Table 2, the proportion of patients with a 15-or-more letter improvement from baseline in BCVA was higher in the implant with the FDA-approved dose (0.7 mg) than with sham for the first 3 months. There was no significant difference in the proportion of patients who improved by 15 letters or more at 6-month follow-up. Note that the implant lasts for 6 months.

Table 2. Summary of Results From the FDA Pivotal Trial in Retinal Vein Occlusion

<table>
<thead>
<tr>
<th>Time Point</th>
<th>Study 1</th>
<th>Study 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implant (0.7 mg)</td>
<td>Sham</td>
</tr>
<tr>
<td>Day 30</td>
<td>40 (20)</td>
<td>15 (7)</td>
</tr>
<tr>
<td>Day 60</td>
<td>58 (29)</td>
<td>21 (10)</td>
</tr>
<tr>
<td>Day 90</td>
<td>45 (22)</td>
<td>25 (12)</td>
</tr>
<tr>
<td>Day 180</td>
<td>39 (19)</td>
<td>37 (18)</td>
</tr>
</tbody>
</table>

Adapted from Allergan (2014).16

BCVA: best-corrected visual acuity; FDA: Food and Drug Administration.

Intravitreal Fluocinolone Acetonide Implant (0.59 mg)

No RCTs were identified assessing the fluocinolone acetonide implants for the treatment of macular edema following retinal vein occlusion.

Additional RCTs

Kuppermann et al (2007) reported on results for an RCT in which 315 patients with persistent macular edema of different etiology (diabetic retinopathy [n=172], branch retinal vein occlusion [n=60], central retinal vein occlusion [n=42], uveitis [n=14], or post-cataract surgery macular edema [n=27]) were assigned to the dexamethasone 0.35-mg implant, the dexamethasone 0.7-mg implant, or observation.20 At 6 months, the proportion of patients meeting the primary outcome of an improvement in visual acuity of 10 letters was 24%, 35% and 13% in 0.35-mg implants, 0.7-mg implants, and observation-only groups, respectively. In a small trial in 50 patients, Pichi et al (2014) found that the combination of dexamethasone 0.7-mg intravitreal implants plus macular grid laser increased both visual acuity and the interval between repeated implants.21 Gado and Macky (2014; n=60) reported no significant differences in visual acuity outcomes between dexamethasone implants and bevacizumab.22 Maturi et al (2014) reported on results for 30 patients randomized to dexamethasone implants plus bevacizumab or bevacizumab monotherapy and found no additional benefit for visual acuity with the combination treatment at 6 months.23

Adverse Events

As listed in the prescribing label, in controlled studies, the most common adverse reactions reported by 20% to 70% of patients were cataracts, increased IOP, and conjunctival hemorrhage.16
Section Summary: Intravitreal Dexamethasone Implant (0.7 mg) or Intravitreal Fluocinolone Acetonide Implant (0.59 mg) for Macular Edema After Retinal Vein Occlusion

Two identical RCTs have established the efficacy of dexamethasone intravitreal implants (0.7 mg) for patients with macular edema following retinal vein occlusion. The 2 RCTs compared 2 doses of implants with sham control. Compared with sham, both doses of the dexamethasone implant resulted in clinically meaningful improvements in visual acuity within 1 to 3 months postimplantation. Further, implant-treated patients achieved improvement in vision faster than the sham controls. However, the vision gain was similar at 6 months. Other small RCTs with shorter follow-up have demonstrated that the combination of implants with macular grid laser may increase the interval between repeated implants. Further, as a class effect, use of dexamethasone implants resulted in higher incidences of cataracts and elevated IOP.

No trials assessing the use of fluocinolone acetonide implants were identified.

Diabetic Macular Edema

A Cochrane review (2008) evaluated the efficacy of intravitreal steroids for macular edema in diabetes. Seven studies, involving 632 eyes with diabetic macular edema (DME), were included. Four trials examined the effectiveness of intravitreal triamcinolone acetate injection, and three examined intravitreal steroid implantation with fluocinolone acetonide (Retisert) or the dexamethasone drug delivery system (including the 2007 Kuppermann trial previously described). Cochrane reviewers concluded that steroids placed inside the eye by intravitreal injection or surgical implantation might improve visual outcomes in eyes with persistent or refractory DME. However, questions remained whether intravitreal steroids could be of value in other (earlier) stages of DME or combination with other therapies, such as laser photocoagulation.

Intravitreal Fluocinolone Acetonide Implant (0.59 mg)

Pearson et al (2011) reported on the 3-year efficacy and safety results of an industry-sponsored, single-blind (evaluator) RCT in which 196 patients with persistent or recurrent unilateral or bilateral DME (referred to as refractory DME) were randomized to implants (n=127) or standard of care, defined as additional laser as needed after 6 months or observation (n=69). All patients had received focal/grid laser photocoagulation before randomization. At 6 months, the proportions of patients who received laser retreatment in the implant and standard of care groups were 4% and 13%, respectively; the percentages after 3 years of follow-up were 15% and 41%, respectively. The primary efficacy outcome (≥15-letter improvement in BCVA at 6 months before any additional laser treatment) was achieved in 16.8% of implanted eyes vs 1.4% of the standard of care eyes (p<0.05). Between 6 and 24 months, visual acuity was statistically significant in favor of the implant group but not beyond 30 months. At 3 years, there was no significant difference between the groups (eg, 31.1% of implanted eyes vs 20.0% of the standard of care eyes improved ≥15 letters). As expected, there were higher incidences of elevated IOP (≥30 mm Hg; 61.4% vs 5.8%), need for surgery to treat glaucoma (33.8% vs 2.4%), and cataracts extraction in phakic eyes (91%
vs 20%), respectively, for eyes treated with implants compared with standard of care. The incidence of vitreous hemorrhage (40.2% vs 18.8%), pruritus (38.6% vs 21.7%), and abnormal sensation in the eye (37.0% vs 11.6%), respectively, were also higher in the eyes treated with implants vs standard of care.

Section Summary: Intravitreal Fluocinolone Acetonide Implant (0.59 mg) for Diabetic Macular Edema

One RCT comparing fluocinolone acetonide implants (0.59 mg) with the standard of care (as needed laser or observation) has supported the efficacy of implants for patients with DME. The primary efficacy outcome, at least a 15-letter improvement in BCVA was significantly improved in a greater proportion of patients given implants vs laser at all time points assessed, except at or beyond 30 months. Note that this implant is active for 30 months. As a class effect, in patients with phakic eyes, use of implants resulted in 90% requiring cataract surgery and 60% developing elevated IOP. Due to the substantial increase in adverse events and availability of agents with safer tolerability profiles (eg, VEGF inhibitors), this implant is not indicated for DME.

Intravitreal Fluocinolone Acetonide Implant (0.19 mg)

Two double-blind, randomized trials (FAME) has assessed patients with DME previously treated with laser photocoagulation. The primary efficacy end point of both trials was the proportion of subjects in whom vision had improved by 15 letters or more at 2 years from baseline. These trials randomized patients to fluocinolone acetonide 0.19-mg or 0.5-mg implants or to sham. Results of these trials were published by Campochiaro et al (2011). In 2014, the FDA approved the 0.19-mg dose based only on similar efficacy at 2 years between the low- and high-dose in improving vision by 15 letters or more from baseline (data not shown). Relevant results with FDA-approved dosing are summarized in Table 3. Campochiaro et al (2012) subsequently reported on 3-year results. The percentage of patients who gained 15 letters or more using the last observation carried forward was 28.7% in the implant group and 18.9% in the sham group. Results of sensitivity analysis without imputation for missing data (»70% follow-up) showed similar results; the percentages of patients who gained 15 letters or more in the 2 groups were 33.0% and 21.4%, respectively. Subgroup analysis showed greater improvement in visual acuity in patients who were pseudophakic compared with those who were phakic (difference in mean change in a number of letters at 2 years from baseline was 5.6 in pseudophakic patients vs 1 letter in phakic patients). This was due to loss of vision from cataracts in phakic eyes that was observed more frequently in eyes with implants vs sham controls. Subgroup analysis also showed greater efficacy in patients with chronic (≥3 years) compared with nonchronic (<3 years) DME. The difference in the proportion of patients who gained 15 or more letters in the implant group vs the sham control group with chronic DME patients was 21% and -5.5 % among nonchronic DME patients.
Table 3. Summary of 2-Year Results From the FDA Pivotal Trials in Diabetic Macular Edema

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Study 1 (N=285)</th>
<th>Study 2 (N=276)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implant (n=190)</td>
<td>Sham (n=95)</td>
</tr>
<tr>
<td>15 letters</td>
<td>51 (27)</td>
<td>14 (15)</td>
</tr>
<tr>
<td>Difference</td>
<td>12.1 (2.6 to 21.6)</td>
<td>13.0 (2.7 to 23.4)</td>
</tr>
<tr>
<td>15 letters</td>
<td>26 (14)</td>
<td>5 (5)</td>
</tr>
<tr>
<td>Difference</td>
<td>8.4 (1.8 to 15.1)</td>
<td>1.8 (-5.9 to 9.6)</td>
</tr>
</tbody>
</table>

Adapted from Alimera Sciences (2014). Values are n (%) or as otherwise indicated. CI: confidence interval; FDA: Food and Drug Administration.

Massin et al (2016) reported on the results of a small prospective noncomparative study in 16 patients with DME insufficiently responsive to laser and anti-VEGF who received fluocinolone acetonide 0.19-mg implants. Two groups of patients were evaluated: group 1 (n=6) included patients ineligible anti-VEGF therapy who received previous treatment with laser photocoagulation while group 2 (n=10) included patients previously treated with laser photocoagulation and at least 3 monthly anti-VEGF treatments. Central subfield thickness was reduced by -299 μm in group 1 and -251 μm in group 2 at 12 months. Mean change in area under the curve from baseline to last value for all eyes was +4.2 letters in group 1 and +3.9 letters in group 2. The benefit in BCVA letter score was more limited and heterogeneous (the effect was more pronounced in pseudophakic eyes) with some patients achieving high improvements of visual acuity, whereas others did not improve. A small number of patients and lack of a control arm limit the interpretation of these findings.

Adverse Events

As listed in the prescribing label, at the end of the 3-year follow-up, 82% (192/235) of phakic eyes with implants underwent cataract surgery compared with 50% (61/121) receiving the sham control. Among these patients, 80% of implant patients vs 27% of sham-controlled had cataract surgery, generally within the first 18 months of the trials. The proportion of patients with IOP elevation of 10 mm Hg or more from baseline was 3 times higher in the implant group (34%) vs the sham group (10%). Respective proportions of patients with IOP of 30 mm Hg or more were 20% and 4%, respectively. As a consequence, a higher proportion of patients in the implant group required surgery for glaucoma (5% vs 1%).

Section Summary: Intravitreal Fluocinolone Acetonide Implant (0.19 mg) for Diabetic Macular Edema

Two RCTs have established the efficacy of fluocinolone acetonide implants (0.19 mg) for patients with DME. Both trials demonstrated the superiority of implants over sham controls. Implant-treated eyes showed clinically meaningful improvements in the vision at 2 and 3 years postimplant. Subgroup analysis showed greater improvements in visual acuity in patients who were pseudophakic than those who were phakic. The major limitation of these implants is that nearly 80% all phakic patients will develop cataracts and will require cataract surgery. Further, IOP was elevated in 34% of patients who received this implant compared

Intravitreal Corticosteroid Implants 9.03.23
with 10% of controls, leading to the restricted indication for patients previously treated with corticosteroids who do not have a clinically significant rise in IOP.

Intravitreal Dexamethasone Implant (0.7 mg)

Two double-blind, randomized trials have assessed patients with DME. These trials randomized patients to a 0.7-mg or a 0.35-mg implant or a sham procedure. Retreatment was allowed if it was at least 6 months since the prior treatment and there was evidence of residual edema. The primary efficacy end point in both trials was the proportion of subjects in whom visual acuity had improved by 15 or more letters at 39 months from baseline or at the final visit for patients who exited the study at or prior to month 36. The month 39 extension was included to accommodate the evaluation of safety and efficacy outcomes for patients who received retreatment at month 36. Results of these trials were published by Boyer et al (2014). In 2014, the FDA approved the 0.7-mg dose. Relevant results with the FDA-approved dosing are summarized in Table 4. Only 14% of study patients completed the month 39 visit (16.8% from the implant, 12.2% from sham). The visual acuity improvements from baseline increased during a treatment cycle, peaked at 3 months posttreatment and diminished after that (data not shown). This result was due to loss of vision related to the development of cataracts. Subgroup analysis showed greater improvements in visual acuity in patients who were pseudophakic than in those who were phakic (difference in mean change in number of letters at 39 months from baseline was 4.2 letters in pseudophakic patients vs 0.3 letters in phakic patients).

Table 4. Summary of 39-Month Results From the FDA Pivotal Trials in Diabetic Macular Edema

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Study 1 (N=328)</th>
<th>Study 2 (N=328)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implant (n=163)</td>
<td>Sham (n=165)</td>
</tr>
<tr>
<td>15 letters</td>
<td>34 (21)</td>
<td>19 (12)</td>
</tr>
<tr>
<td>15 letters</td>
<td>15 (9)</td>
<td>17 (10)</td>
</tr>
</tbody>
</table>

Adapted from Allergan (2014). Values are n (%) or as otherwise indicated. CI: confidence interval; FDA: Food and Drug Administration.

The BEVORDEX trial, which compared bevacizumab with dexamethasone implants, randomized 86 patients with DME; 46 received bevacizumab every 4 weeks, and 46 eyes received a dexamethasone implant every 16 weeks as needed. Results after 12 months of follow-up were reported. Although the primary endpoint of improvement in BCVA of 10 or more letters was similar for both groups (40% of the bevacizumab-treated eyes vs 41% of the dexamethasone-treated eyes), the proportion of patients with vision loss of more than 10 letters was higher in the eyes dexamethasone-treated eyes (10.9%) than in bevacizumab-treated eyes (0%). The dexamethasone implant reduced mean central macular thickness more than bevacizumab (187 μm vs 122 μm; p=0.015), but led to a greater number of adverse events, including IOP elevation of 10 mm Hg or more (19.6% vs 0%) and cataracts (13% vs 4.8%), respectively. Other studies have shown an increase in cataracts predominantly in the second year of treatment with the dexamethasone implant.
Section Summary: Intravitreal Dexamethasone Implant (0.7 mg) for Diabetic Macular Edema

Two identical RCTs have established the efficacy of dexamethasone intravitreal implants (0.7 mg) for patients with DME. The 2 RCTs compared 2 doses of the implant with sham control. Compared with sham, both doses of the dexamethasone implant resulted in clinically meaningful improvements in visual acuity at 39 months postimplantation. The visual acuity improvement peaked at 3 months posttreatment but diminished after that, possibly due to development of cataracts. Subgroup analysis showed greater improvements in visual acuity in patients who were pseudophakic than in those who were phakic. One small RCT with 1-year follow-up has demonstrated similar rates of success on the primary end point; however, more implant-treated patients experienced vision loss of at least 10 letters and greater frequency of side effects (eg, cataracts, elevated IOP) compared with bevacizumab.

Intravitreal Dexamethasone Implant (0.7 mg) Plus Anti-VEGF Therapy

Maturi et al (2015) reported on a small (N=40 eyes) single-masked, randomized trial comparing dexamethasone plus bevacizumab with bevacizumab alone. At 12 months, there was no significant difference between groups in visual acuity, with an improvement of 5.4 letters in the combined group and 4.9 letters in the monotherapy group. The monotherapy group received a mean of 9 bevacizumab injections, which was similar to a mean of 6 bevacizumab injections plus 2.1 dexamethasone injections for the combined treatment group. Treatment with dexamethasone implants led to a greater mean reduction in central subfield thickness (difference, 69 μm; p=0.03). Drug-related adverse events were higher in the combined treatment group, with IOP elevation (>21 mm Hg) in 6 eyes and worsening of cataracts in 9 eyes. In the bevacizumab monotherapy group, there was an instance of IOP elevation.

Section Summary: Intravitreal Dexamethasone Implant (0.7 mg) Plus Anti-VEGF Therapy for Diabetic Macular Edema

One small RCT with 1-year follow-up has demonstrated that combined treatment with implants plus bevacizumab compared with bevacizumab alone resulted in similar gains in visual acuity but a greater frequency of side effects with combined treatment. Use of dexamethasone implants resulted in higher incidences of cataracts and elevated IOP.

Intravitreal Dexamethasone Implant (0.7 mg) Plus Laser Photocoagulation

The PLACID study group reported on a multicenter, double-masked, RCT (N=253) that compared dexamethasone implant plus combination laser photocoagulation with sham treatment plus laser photocoagulation for the treatment of DME. The percentage of patients in the combination group vs the sham group who gained 10 or more letters was greater at 1 month (31.7% vs 11.0%, p<0.001) and 9 months (31.7% vs 17.3%, p=0.007) than at 12 months (27.8% vs 23.6%), respectively. More patients in the sham group discontinued the study due to lack of efficacy (8.7% vs 0.8%), which might have biased results. An
increase in IOP of at least 10 mm Hg was observed in 15.2% of eyes treated with dexamethasone implants. Also, cataracts-related adverse events were more common after treatment with dexamethasone implants (22.2% vs 9.5%, p=0.017).

Section Summary: Intravitreal Dexamethasone Implant (0.7 mg) Plus Laser Photocoagulation for Diabetic Macular Edema
One RCT with 1-year follow-up comparing combination implants plus laser photocoagulation with laser photocoagulation alone found better visual acuity (as measured by a gain of ≥10 letters) at 9 months but not at 12 months. A differential lost to follow-up, lack of power calculations for sample size estimation, and lack of intention-to-treat analysis limit interpretation of results. Use of dexamethasone implants resulted in higher incidences of cataracts and elevated IOP.

Age-Related Macular Degeneration

Intravitreal Dexamethasone Implant (0.7 mg) Plus Anti-VEGF Therapy
Kuppermann et al (2015) reported on the results of industry-sponsored, single-masked, sham-controlled, randomized trial in which 243 patients with choroidal neovascularization secondary to age-related macular degeneration (AMD) were allocated to dexamethasone implants (n=123) or a sham procedure (n=120). All patients received 2 protocol-mandated intravitreal ranibizumab injections with the next injection given as needed based on established study criteria. The primary efficacy end point was the ranibizumab injection-free interval at 6 months. The median injection-free survival was 34 days in the implant group and 29 days in the sham control group. Though this difference was statistically significant (p=0.016), the effect size was small and clinically insignificant. The proportions of patients who did not require rescue ranibizumab over the 6-month study period were 8.3% the implant group and 2.5% in the sham group (p=0.048). There were no significant differences between groups in mean change from baseline BCVA. More patients in the dexamethasone implant group had increased IOP (13.2% vs 4.2%; p=0.014), but there were no differences between groups in cataracts-related events. Notably, the trial had a short follow-up (6 months).

Section Summary: Intravitreal Dexamethasone Implant (0.7 mg) Plus Anti-VEGF Therapy for Age-Related Macular Degeneration
One RCT has evaluated the impact of adding implants to a standard VEGF inhibitor for patients with AMD. Results of this trial failed to demonstrate clinically meaningful reductions in the ranibizumab injection-free interval. Further, there was an IOP elevation in a greater proportion of patients receiving implants without any additional clinical benefit.

Other Conditions

Birdshot Retinochoroidopathy
Birdshot retinochoroidopathy, also known as birdshot chorioretinopathy or vitiliginous chorioretinitis, is a chronic, bilateral rare form of posterior uveitis with
characteristic hypopigmented lesions. No RCTs were identified for the treatment of this indication for any corticosteroids intravitreal implants. Bajwa et al (2014) published a retrospective case series involving 11 patients (11 eyes) refractory or intolerant to conventional immunomodulatory therapy who received fluocinolone acetonide implants (0.59 mg). Reported outcomes were disease activity markers. The proportion of patients with intraocular inflammation was 55% at baseline, which decreased to 10%, 11%, and 0% at year 1, 2, and 3, respectively. Active vasculitis was noted in 36.3% patients at baseline and 0% at 3-year follow-up. More than 20% reduction in central retinal thickness was noted in all patients with cystoid macular edema at 6 months, 1 year, 2 years, and 3 years postimplant. Another retrospective cohort study (2013), which included 11 eyes with birdshot chorioretinitis, reported improved control of inflammation and decreased reliance on adjunctive therapy with fluocinolone acetonide implants (0.59 mg). Authors observed a more robust increase in IOP compared with the observed elevation in patients with other types of posterior uveitis and panuveitis. In another retrospective study, which included 32 eyes with birdshot chorioretinopathy who received fluocinolone acetonide implant (0.59 mg) with 12-month follow-up, Rush et al (2011) also reported a decrease in vitreous haze from 26% at baseline to 100% at 12 months. In 2 small retrospective studies with 6 eyes in 3 patients and 6 eyes in 4 patients, respectively, reported the favorable effects of dexamethasone implants on ocular inflammation and macular edema during treatment. All eyes exhibited control of ocular inflammation and macular edema. In the first study, all 3 patients achieved BCVA of at least 20/25 during treatment. In the second, there was a mean improvement of 70 letters on BCVA using the EDTRS chart.

Section Summary: Birdshot Retinochoroidopathy
No RCTs were identified on the treatment of birdshot retinochoroidopathy with any corticosteroids intravitreal implants. Available evidence includes multiple observational studies that noted improvements in anatomic and visual acuity outcomes in patients refractory or intolerant to the current standard of treatment. Long-term follow-up for efficacy and safety is limited. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in refractory or intolerant patients with birdshot retinopathy.

Cystoid Macular Edema Related to Retinitis Pigmentosa
Retinitis pigmentosa is a degenerative process of the retina primarily affecting the rod photoreceptors and retinal pigment epithelium. Many studies have shown a prevalence of cystoid macular edema in 10% to 15% of patients with retinitis pigmentosa. No RCTs were identified on the treatment of this indication for any corticosteroids intravitreal implants. Multiple case reports describing the use of dexamethasone implants in 8 patients with macular edema as a consequence of retinitis pigmentosa have been published. All case reports have a short follow-up (<1 year), and a few lacked a complete description of benefit. Overall, these reports found mix improvements on various anatomic and functional outcomes with transient benefits to complete recovery of cystoid macular edema.
Section Summary: Cystoid Macular Edema Related to Retinitis Pigmentosa
No RCTs were identified on the treatment of cystoid macular edema with any corticosteroids intravitreal implants. Available evidence includes multiple case reports that have noted mix results for anatomic and visual acuity outcomes. Long-term follow-up for efficacy and safety is limited. Larger RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with cystoid macular edema related to retinitis pigmentosa.

Idiopathic Macular Telangiectasia Type 1
Type 1 macular telangiectasia is a rare congenital and unilateral condition of the eye in which a focal expansion or outpouching and dilation of capillaries in the parafoveal region leads to vascular incompetence, atrophy, and central loss of vision. It is also considered a variant of Coats disease. No RCTs were identified on the treatment of macular telangiectasia with any corticosteroids intravitreal implants. Three case reports with a total 9 patients with type 1 idiopathic macular telangiectasia treated with dexamethasone implants have described mixed results on improvements in visual acuity and reduction in inflammation.\(^{46,47,48}\)

Section Summary: Idiopathic Macular Telangiectasia Type 1
No RCTs were identified on the treatment of idiopathic macular telangiectasia type 1 with any corticosteroids intravitreal implants. Available evidence includes multiple case reports, which have noted mix results for visual acuity and inflammation-related outcomes. Long-term follow-up on efficacy and safety is limited. Better quality studies with long-term follow-up are needed to permit conclusions on the efficacy of corticosteroid implants in patients with this indication.

Postoperative Chronic Macular Edema
Postoperative chronic macular edema also called as pseudophakic cystoid macular edema or Irvine-Gass syndrome, is one of the most common causes of visual loss after cataract surgery. It is thought to occur as a consequence of inflammatory mediators that are upregulated in the aqueous and vitreous humors after surgical manipulation; it can lead to a permanent visual loss. No RCTs were identified on the treatment of this indication with any corticosteroids intravitreal implants. Multiple case series have assessed improvements in visual acuity and anatomic changes.\(^{49,50,51,52,53,54,55}\) However, these studies have included only small numbers of patients and reported mean pre-post changes in visual acuity and eye anatomy that lack responder analysis using clinically meaningful changes in outcomes. EPISODIC, a 2017 observational retrospective study conducted in France, included 100 patients with postsurgical macular edema who received dexamethasone implants between 2011 and 2014 and who had a minimum of 1-year follow-up.\(^{56}\) Mean improvement in BCVA was 9.6 ETDRS letters at month 6 and 10.3 at month 12. The proportions of eyes with gains in BCVA of 15 or more letters were 32.5% and 37.5% at months 6 and 12, respectively. The average reduction in central subfield macular thickness was 135.2 and 160.9 μm at months 6 and 12.
Section Summary: Postoperative Chronic Macular Edema
No RCTs were identified on the treatment of postoperative chronic macular edema with any corticosteroids intravitreal implants. Available evidence includes multiple observational studies. Of these, a large retrospective analysis of 100 patients showed that 2 of every 5 patients experienced clinically meaningful improvements in visual acuity after 1 year of follow-up. An RCT is needed to confirm the efficacy of corticosteroid implants in patients with this indication.

Circumscribed Choroidal Hemangioma
Circumscribed choroidal hemangiomas are benign vascular hamartomas without systemic associations. No RCTs were identified on the treatment of circumscribed choroidal hemangiomas with any corticosteroids intravitreal implants. A single case report (2012) has described the use of photodynamic therapy combined with dexamethasone implants. Authors concluded that implants potentiated the effect of photodynamic therapy with less risk of local side effects than triamcinolone acetonide. 57

Section Summary: Circumscribed Choroidal Hemangiomas
No RCTs were identified on the treatment of circumscribed choroidal hemangiomas with any corticosteroids intravitreal implants. Available evidence includes a single case report that does not permit a conclusion on the efficacy and safety of adding dexamethasone implants to photodynamic therapy for treatment of circumscribed choroidal hemangiomas. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with this indication.

Proliferative Vitreoretinopathy
Proliferative vitreoretinopathy develops as a complication of rhegmatogenous retinal detachment. Proliferative vitreoretinopathy occurs in 8% to 10% of patients undergoing primary retinal detachment surgery and prevents the successful surgical repair of rhegmatogenous retinal detachment. No RCTs were identified on the treatment of proliferative vitreoretinopathy with any corticosteroids intravitreal implants. A case series (2017) of 5 patients with proliferative vitreoretinopathy has described combined use of surgery, endolaser, and dexamethasone implants. 58 A case report (2013) found a benefit of dexamethasone implants in preventing proliferative vitreoretinopathy in a patient with a rhegmatogenous retinal detachment, who experienced improvements in visual acuity and retinal attachment 9 months postsurgery. 59

Section Summary: Proliferative Vitreoretinopathy
No RCTs were identified on the treatment of proliferative vitreoretinopathy with any corticosteroids intravitreal implants. Available evidence includes a case series and a case report. These studies reported multiple interventions, including dexamethasone implants in conjunction with surgery and laser, for preventing proliferative retinopathy after retinal detachment surgery. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with proliferative retinopathy.
Radiation Retinopathy
Radiation retinopathy is delayed-onset damage to the retina due to exposure to ionizing radiation, typically after months and is slowly progressive. No RCTs were identified on the treatment of radiation retinopathy with any corticosteroids intravitreal implants. In a retrospective study (2015), 12 eyes diagnosed with radiation maculopathy secondary to plaque brachytherapy were treated with dexamethasone implants. Anatomic improvements in foveal thickness were reported, with nonsignificant improvements in visual acuity. In a 2014 retrospective case series, 2 patients who developed radiation maculopathy after radiotherapy for uveal melanoma were treated with dexamethasone implants. They had limited responses to bevacizumab and intravitreal triamcinolone. Dexamethasone implants provided a prolonged period of anatomic stabilization. In a retrospective chart review of 5 patients with choroidal melanoma treated with dexamethasone implants for radiation macular edema, Baillif et al (2013) reported improvements in visual acuity were reported. The mean improvement in ETDRS letters was 5. Visual acuity improved for 3 patients (+4, +9, and +15 letters) and remained unchanged for 2.

Section Summary: Radiation Retinopathy
No RCTs were identified on the treatment of radiation retinopathy with any corticosteroids intravitreal implants. Available evidence includes multiple observational studies that noted improvements in anatomic stability and visual acuity. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with radiation retinopathy.

Summary of Evidence

Uveitis
For individuals with chronic noninfectious intermediate or posterior uveitis who receive an intravitreal fluocinolone acetonide implant (0.59 mg), the evidence includes 4 RCTs. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Two of the 4 RCTs compared 2 doses of implants, and 2 trials compared implants with systemic steroids (and immunosuppression when indicated). All trials supported the efficacy of intravitreal fluocinolone acetonide implants in preventing recurrence and improving visual acuity over 4-year follow-up. The head-to-head trial comparing implants with systemic corticosteroids did not show substantial superiority in the overall effectiveness of either approach. After 24 and 54 months of follow-up, visual acuity improved from baseline in the implant groups compared with the systematic therapy groups by +6.0 and +3.2 letters (p=0.16) and +2.4 and 3.1 letters (p=0.073), respectively. However, nearly all phakic patients receiving implants developed cataracts and required cataract surgery. Further, most also developed glaucoma, with 75% of patients requiring IOP-lowering medications and 35% requiring filtering surgeries. Systemic adverse events such as hyperlipidemia, diabetes, osteoporosis, fractures, and blood count/chemistry abnormalities were infrequent and not statistically distinguishable between groups. The incidence of hypertension was greater in the systemic therapy group (27%) than in the implant group (13%), but rates of antihypertensive treatment initiation did not differ. The
Evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with noninfectious intermediate or posterior uveitis who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes an RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Results of this trial at 8 weeks showed that the implant was effective in reducing inflammation (the proportion of eyes with no inflammation was 47% and 12% with implant and sham, respectively) and resulted in clinically meaningful improvement in vision at week 8 compared with sham controls (the proportion of patients with a gain of ≥15 letters in best-corrected visual acuity from baseline was >40% with implants and 10% with sham). Further, at week 26, patients treated with implants reported meaningful increases in vision-related functioning. The major limitation of this trial was its lack of long-term follow-up. Use of implants resulted in higher incidences of cataracts and elevated IOP. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Macular Edema

For individuals with macular edema after retinal vein occlusion who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes 2 RCTs. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Compared with sham controls, implants resulted in clinically meaningful improvements in visual acuity within 1 to 3 months postimplant and improvement in vision occurred faster. The difference in the proportion of patients with gain of 15 or more letters in best-corrected visual acuity from baseline was more than 10% in favor implants vs sham in both studies at 30, 60 and 90 days, but not at 180 days postimplant. Use of implants resulted in higher incidences of cataracts and elevated IOP. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with macular edema after retinal vein occlusion who receive an intravitreal fluocinolone acetonide implant (0.59 mg), no studies were identified. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Diabetic Macular Edema

For individuals with refractory (persistent or recurrent) DME who receive an intravitreal fluocinolone acetonide implant (0.59 mg), the evidence includes an RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Compared with the standard of care (as needed laser or observation), a greater proportion of patients with implants reported clinically significant improvement in vision at 6 months (1.4% vs 16.8% respectively) and subsequent time points assessed but not at or beyond 30 months of follow-up. Ninety percent of patients with phakic eyes who received implants required cataract surgery, and 60% developed elevated IOP.
Due to the substantial increase in adverse events and availability of agents with better tolerability profiles (eg, anti-VEGF inhibitors), implant use in DME is questionable. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with DME who receive an intravitreal fluocinolone acetonide implant (0.19 mg), the evidence includes 2 RCTs. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Implant-treated eyes showed clinically meaningful improvements in the vision at 2 and 3 years postimplant. The percentage of patients who gained 15 letters or more was 28.7% in the implant group vs 18.9% in the sham group at 3 years. Subgroup analysis showed greater improvements in visual acuity in patients who were pseudophakic compared with those who were phakic (difference in mean change in number of letters at 2 years from baseline was 5.6 letters in pseudophakic patients vs 1 letter in phakic patients). A major limitation of these implants is that nearly 80% all phakic patients will develop cataracts and will require cataract surgery. Further, IOP was elevated in 34% of patients who received this implant compared with 10% of controls. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with DME who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes 3 RCTs. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Compared with sham control, 2 identically designed RCTs showed clinically meaningful improvements in vision with dexamethasone implants that peaked at 3 months and maintained 39 months (with retreatment). The difference in the proportion of patients with a gain of 15 or more letters in best-corrected visual acuity from baseline was 9.3% and 13.0% in the 2 trials, respectively, favoring implant vs sham at 39 months postimplant. Subgroup analysis of these trials showed greater improvements in visual acuity in patients who were pseudophakic compared with those who were phakic. Results of a small RCT showed that, compared with bevacizumab, implant-treated patients at 1 year had similar improvement rates on the primary end point, but experienced greater rates of vision loss (0% vs 10.9%), greater frequency of side effects such as cataracts (4.8% vs 13%) and elevated IOP (0% vs 19.6%), all respectively. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with DME who receive an intravitreal dexamethasone implant (0.7 mg) plus anti-VEGF therapy, the evidence includes an RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. One small RCTs with a one-year follow-up demonstrated that combination implants plus bevacizumab compared with bevacizumab alone resulted in a similar gain in visual acuity (5.4 letters vs 4.9 letters), but a greater frequency of side effects with combined treatment. Use of dexamethasone implants resulted in higher incidence of cataracts and elevated IOP. A larger RCT with adequate power is needed to confirm these findings. The
evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with DME who receive an intravitreal dexamethasone implant (0.7 mg) plus laser photocoagulation, the evidence includes an RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. One RCT with 1-year follow-up demonstrated that combination implants plus laser photocoagulation compared with laser photocoagulation alone resulted in better visual acuity (as measured by a gain of ≥10 letters) at 9 months but not at 12 months. However, the generally accepted standard outcome measure for change is 15 or more letters, and this standard was not used in this trial. The use of dexamethasone implants resulted in higher incidences of cataracts and elevated IOP. Further, a differential loss to follow-up, lack of power calculations for sample size estimation, and lack of intention-to-treat analysis preclude interpretation of results. A larger RCT with adequate power is needed to confirm these findings. The evidence is insufficient to determine the effects of the technology on health outcomes.

Age-Related Macular Degeneration
For individuals with age-related macular degeneration who receive an intravitreal dexamethasone implant (0.7 mg) plus anti-VEGF inhibitor, the evidence includes an RCT. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Results of this trial did not demonstrate clinically meaningful reductions in the ranibizumab injection-free interval between combined treatments (34 days) and anti-VEGF alone (29 days; p=0.016). Further, IOP was elevated in a greater proportion of patients receiving implants without any additional clinical benefit. The evidence is insufficient to determine the effects of the technology on health outcomes.

Other Conditions
For individuals with birdshot retinochoroidopathy refractory or intolerant to standard therapy who receive an intravitreal fluocinolone acetonide implant (0.59 mg) or intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple observational studies. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Multiple observational studies have noted improvements in anatomic and visual acuity outcomes. Long-term follow-up for efficacy and safety is limited. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with refractory or intolerant birdshot retinopathy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with cystoid macular edema related to retinitis pigmentosa who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple case reports. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Case reports have noted mix results for anatomic and visual acuity outcomes. Long-term follow-up for efficacy and safety is limited. Larger RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients...
with cystoid macular edema related to retinitis pigmentosa. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with idiopathic macular telangiectasia type 1 who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple case reports. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Case reports have noted mix results for visual acuity and inflammation-related outcomes. Long-term follow-up for efficacy and safety is limited. Better quality studies with long-term follow-up are needed to permit conclusions on the efficacy of corticosteroid implants in patients with idiopathic macular telangiectasia type 1. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with postoperative chronic macular edema who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple observational studies. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Among the multiple observational studies, a large retrospective analysis of 100 patients showed that 2 of every 5 patients experienced clinically meaningful improvements in the vision at 1-year follow-up. An RCT is needed to confirm the efficacy of corticosteroid implants in patients with postoperative chronic macular edema. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with circumscribed choroidal hemangiomas who receive an intravitreal dexamethasone implant (0.7 mg) plus photodynamic therapy, the evidence includes a case report. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Results of the case report do not permit conclusions about the efficacy or safety of adding dexamethasone implants for circumscribed choroidal hemangiomas to photodynamic therapy. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in this population. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with proliferative vitreoretinopathy who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes a case series and a case report. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. These studies have reported multiple interventions, including dexamethasone implants in conjunction with surgery and laser for preventing proliferative retinopathy after retinal detachment surgery. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with proliferative retinopathy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with radiation retinopathy who receive an intravitreal dexamethasone implant (0.7 mg), the evidence includes multiple observational studies. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Multiple observational
studies have noted improvements in anatomic and visual acuity outcomes. Long-term follow-up for efficacy and safety is limited. RCTs are needed to permit conclusions on the efficacy of corticosteroid implants in patients with radiation retinopathy. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Clinical Input From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, input was received from 1 physician specialty society and 1 academic medical center while this policy was under review in 2011. Input supported the use of intravitreal corticosteroid implants, confined to indications labeled by the Food and Drug Administration. It was noted that Ozurdex (intravitreal dexamethasone implant 0.7 mg) is used for short-term uveitis control while the Retisert (intravitreal fluocinolone acetonide implant 0.59 mg) implant is used for more long-term control of uveitis.

Practice Guidelines and Position Statements

American Academy of Ophthalmology
In 2015, the American Academy of Ophthalmology published it preferred practice guidelines for retinal vein occlusions.63 These guidelines stated: “The safest treatment for the associated macular edema is the use of anti-VEGFs [anti-vascular endothelial growth factors]. Intravitreal corticosteroids, with the associated risk of glaucoma and cataract formation, have demonstrated efficacy. Also, laser photocoagulation in BRVO [branch retinal vein occlusion] has a potential role in treatment.” The pivotal GENEVA trials were not rated for quality.

National Institute for Health and Care Excellence
In 2017, the National Institute for Health and Care Excellence (NICE) released guidance on the use of dexamethasone intravitreal implant (with adalimumab) for the treatment of noninfectious uveitis.64 NICE recommended the implant only in cases of “active disease” with “worsening vision” and the “risk of blindness.”

In 2011, NICE provided guidance on the use of the dexamethasone intravitreal implant for macular edema secondary to retinal vein occlusion.65 The dexamethasone implant was recommended as an option for the treatment of macular edema following retinal vein occlusion. NICE also recommended it as an option for treating macular edema following branch retinal vein occlusion when treatment with laser photocoagulation has not been beneficial or suitable.
In 2015, NICE provided guidance on the dexamethasone intravitreal implant (Ozurdex) for treating diabetic macular edema.66 Ozurdex was recommended as a possible treatment for diabetic macular edema if there is “an artificial lens” and the edema either has “not improved with non-corticosteroid treatment, or such treatment is not suitable.”

In 2013, NICE updated its guidance on the intravitreal fluocinolone acetonide implant (Iluvien), recommending Iluvien as an option for treating chronic diabetic macular edema that is insufficiently responsive to available therapies only if:

- “the implant is to be used in an eye with an intraocular [pseudophakic] lens \textbf{and}
- their diabetic macular oedema has not got better with other treatments.”67

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 5.

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02374060</td>
<td>PeriOcular and INTravitreal Corticosteroids for Uveitic Macular Edema Trial</td>
<td>267</td>
<td>Jul 2018 (suspended)</td>
</tr>
<tr>
<td>NCT02471651a</td>
<td>Dexamethasone Intravitreal Implant for the Treatment of Persistent Diabetic Macular Edema</td>
<td>40</td>
<td>Sep 2018</td>
</tr>
<tr>
<td>NCT02731911a</td>
<td>Study of OZURDEX® in the Treatment of Diabetic Macular Edema (DME) in Australia - The AUSSIEDEX Study</td>
<td>202</td>
<td>Sep 2018</td>
</tr>
<tr>
<td>NCT02951975</td>
<td>Ozurdex® in Patients With Non-infectious Uveitis Affecting the Posterior Segment of the Eye</td>
<td>400</td>
<td>Jan 2019</td>
</tr>
<tr>
<td>NCT02556424a</td>
<td>Efficacy and Tolerance Comparison Between Subconjunctival Injection of Triamcinolone and Intravitreal Implant of Dexamethasone for the Treatment of Inflammatory Macular Edema</td>
<td>142</td>
<td>Feb 2019</td>
</tr>
<tr>
<td>NCT02623426</td>
<td>Macular Edema Ranibizumab v. Intravitreal Anti-inflammatory Therapy Trial</td>
<td>240</td>
<td>Jul 2019</td>
</tr>
<tr>
<td>NCT03003416</td>
<td>Efficacy of Ozurdex® in the Treatment of Diabetic Macular Edema</td>
<td>260</td>
<td>Sep 2019</td>
</tr>
<tr>
<td>NCT01998412a</td>
<td>Iluvien Registry Safety Study (IRISS)</td>
<td>559</td>
<td>Jan 2020</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02399657a</td>
<td>Effect of Dexamethasone Implant in Hard Exudate Complicated With Diabetic Macular Edema</td>
<td>48</td>
<td>Dec 2016 (unknown)</td>
</tr>
</tbody>
</table>
NCT01827722

Trial Name: Ozurdex® Versus Ranibizumab Versus Combination for Central Retinal Vein Occlusion
Planned Enrollment: 45
Completion Date: Dec 2016 (unknown)

NCT02684084

Trial Name: Combination OZURDEX® & LUCENTIS® vs. OZURDEX® Monotherapy in Incomplete-Responders With Diabetic Macular Edema
Planned Enrollment: 60
Completion Date: Dec 2016 (unknown)

NCT01945866

Trial Name: Phase II Combination Steroid and Anti-VEGF for Persistent DME
Planned Enrollment: 129
Completion Date: Jun 2017 (completed)

NCT02902744

Trial Name: Fluocinolone Acetonide Insert (ILUVIEN®) for Diabetic Macular Edema (FAD) Study
Planned Enrollment: 0
Completion Date: Aug 2017 (withdrawn)

NCT: national clinical trial.
a Denotes industry-sponsored or cosponsored trial.

REFERENCES

49. Intravitreal Corticosteroid Implants 9.03.23
Billing Coding/Physician Documentation Information

67027 Implantation of intravitreal drug delivery system (eg, ganciclovir implant), includes concomitant removal of vitreous

67028 Intravitreal injection of a pharmacologic agent (separate procedure)

J7311 Fluocinolone acetonide, intravitreal implant

J7312 Injection, dexamethasone, intravitreal implant, 0.1 mg

J7313 Injection, fluocinolone acetonide, intravitreal implant, 0.01 mg

ICD-10 Codes:

- E10.311 Type 1 diabetes mellitus with unspecified diabetic retinopathy with Macular edema
- E10.321 Type 1 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema
- E10.3211 Type 1 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, right eye
- E10.3212 Type 1 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, left eye
- E10.3213 Type 1 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, bilateral
- E10.331 Type 1 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema
- E10.3311 Type 1 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, right eye
- E10.3312 Type 1 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, left eye
- E10.3313 Type 1 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, bilateral
- E10.341 Type 1 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema
- E10.3411 Type 1 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, right eye
- E10.3412 Type 1 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, left eye
- E10.3413 Type 1 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, bilateral
- E10.351 Type 1 diabetes mellitus with proliferative diabetic retinopathy with macular edema
- E10.3511 Type 1 diabetes mellitus with proliferative diabetic retinopathy with macular edema, right eye
- E10.3512 Type 1 diabetes mellitus with proliferative diabetic retinopathy with macular edema, left eye
- E10.3513 Type 1 diabetes mellitus with proliferative diabetic retinopathy with macular edema, bilateral
- E11.311 Type 2 diabetes mellitus with unspecified diabetic retinopathy with macular edema
E11.321 Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema
E11.3211 Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, right eye
E11.3212 Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, left eye
E11.3213 Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, bilateral
E11.331 Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema
E11.3311 Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, right eye
E11.3312 Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, left eye
E11.3313 Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, bilateral
E11.341 Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema
E11.3411 Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, right eye
E11.3412 Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, left eye
E11.3413 Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, bilateral
E11.351 Type 2 diabetes mellitus with proliferative diabetic retinopathy with macular edema
E11.3511 Type 2 diabetes mellitus with proliferative diabetic retinopathy with macular edema, right eye
E11.3512 Type 2 diabetes mellitus with proliferative diabetic retinopathy with macular edema, left eye
E11.3513 Type 2 diabetes mellitus with proliferative diabetic retinopathy with macular edema, bilateral
H34.9 Unspecified retinal vascular occlusion
H34.811 Central retinal vein occlusion, right eye
H34.8110 Central retinal vein occlusion, right eye, with macular edema
H34.812 Central retinal vein occlusion, left eye
H34.8120 Central retinal vein occlusion, left eye, with macular edema
H34.813 Central retinal vein occlusion, bilateral
H34.8130 Central retinal vein occlusion, bilateral, with macular edema
H34.819 Central retinal vein occlusion, unspecified eye
H34.831 Tributary (branch) retinal vein occlusion, right eye
H34.8310 Tributary (branch) retinal vein occlusion, right eye, with macular edema
H34.832 Tributary (branch) retinal vein occlusion, left eye
H34.8320 Tributary (branch) retinal vein occlusion, left eye, with macular edema
H34.833 Tributary (branch) retinal vein occlusion, bilateral
H34.839 Tributary (branch) retinal vein occlusion, unspecified eye
H34.821 Venous engorgement, right eye
H34.822 Venous engorgement, left eye
H34.823 Venous engorgement, bilateral
H34.829 Venous engorgement, unspecified eye
H34.8330 Tributary (branch) retinal vein occlusion, bilateral, with macular edema
H35.81 Retinal edema
H30.001 Unspecified focal chorioretinal inflammation, right eye
H30.002 Unspecified focal chorioretinal inflammation, left eye
H30.003 Unspecified focal chorioretinal inflammation, bilateral
H30.009 Unspecified focal chorioretinal inflammation, unspecified eye
H30.011 Focal chorioretinal inflammation, juxtapapillary, right eye
H30.012 Focal chorioretinal inflammation, juxtapapillary, left eye
H30.013 Focal chorioretinal inflammation, juxtapapillary, bilateral
H30.019 Focal chorioretinal inflammation, juxtapapillary, unspecified eye
H30.021 Focal chorioretinal inflammation of posterior pole, right eye
H30.022 Focal chorioretinal inflammation of posterior pole, left eye
H30.023 Focal chorioretinal inflammation of posterior pole, bilateral
H30.029 Focal chorioretinal inflammation of posterior pole, unspecified eye
H30.031 Focal chorioretinal inflammation, peripheral, right eye
H30.032 Focal chorioretinal inflammation, peripheral, left eye
H30.033 Focal chorioretinal inflammation, peripheral, bilateral
H30.039 Focal chorioretinal inflammation, peripheral, unspecified eye
H30.041 Focal chorioretinal inflammation, macular or paramacular, right eye
H30.042 Focal chorioretinal inflammation, macular or paramacular, left eye
H30.043 Focal chorioretinal inflammation, macular or paramacular, bilateral
H30.049 Focal chorioretinal inflammation, macular or paramacular, unspecified eye
H30.101 Unspecified disseminated chorioretinal inflammation, right eye
H30.102 Unspecified disseminated chorioretinal inflammation, left eye
H30.103 Unspecified disseminated chorioretinal inflammation, bilateral
H30.109 Unspecified disseminated chorioretinal inflammation, unspecified eye
H30.111 Disseminated chorioretinal inflammation of posterior pole, right eye
H30.112 Disseminated chorioretinal inflammation of posterior pole, left eye
H30.113 Disseminated chorioretinal inflammation of posterior pole, bilateral
H30.119 Disseminated chorioretinal inflammation of posterior pole, unspecified eye
H30.121 Disseminated chorioretinal inflammation, peripheral right eye
H30.122 Disseminated chorioretinal inflammation, peripheral, left eye
H30.123 Disseminated chorioretinal inflammation, peripheral, bilateral
H30.129 Disseminated chorioretinal inflammation, peripheral, unspecified eye
H30.131 Disseminated chorioretinal inflammation, generalized, right eye
H30.132 Disseminated chorioretinal inflammation, generalized, left eye
H30.133 Disseminated chorioretinal inflammation, generalized, bilateral
H30.139 Disseminated chorioretinal inflammation, generalized, unspecified eye
H30.141 Acute posterior multifocal placoid pigment epitheliopathy, right eye
H30.142 Acute posterior multifocal placoid pigment epitheliopathy, left eye
H30.143 Acute posterior multifocal placoid pigment epitheliopathy, bilateral
H30.149 Acute posterior multifocal placoid pigment epitheliopathy, unspecified eye
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H30.891</td>
<td>Other chorioretinal inflammations, right eye</td>
</tr>
<tr>
<td>H30.892</td>
<td>Other chorioretinal inflammations, left eye</td>
</tr>
<tr>
<td>H30.893</td>
<td>Other chorioretinal inflammations, bilateral</td>
</tr>
<tr>
<td>H30.899</td>
<td>Other chorioretinal inflammations, unspecified eye</td>
</tr>
<tr>
<td>H30.90</td>
<td>Unspecified chorioretinal inflammation, unspecified eye</td>
</tr>
<tr>
<td>H30.91</td>
<td>Unspecified chorioretinal inflammation, right eye</td>
</tr>
<tr>
<td>H30.92</td>
<td>Unspecified chorioretinal inflammation, left eye</td>
</tr>
<tr>
<td>H30.93</td>
<td>Unspecified chorioretinal inflammation, bilateral</td>
</tr>
<tr>
<td>H30.20</td>
<td>Posterior cyclitis, unspecified eye</td>
</tr>
<tr>
<td>H30.21</td>
<td>Posterior cyclitis, right eye</td>
</tr>
<tr>
<td>H30.22</td>
<td>Posterior cyclitis, left eye</td>
</tr>
<tr>
<td>H30.23</td>
<td>Posterior cyclitis, bilateral</td>
</tr>
<tr>
<td>H30.811</td>
<td>Harada’s disease, right eye</td>
</tr>
<tr>
<td>H30.812</td>
<td>Harada’s disease, left eye</td>
</tr>
<tr>
<td>H30.813</td>
<td>Harada’s disease, bilateral</td>
</tr>
<tr>
<td>H30.819</td>
<td>Harada’s disease, unspecified eye</td>
</tr>
</tbody>
</table>

Additional Policy Key Words

N/A

Policy Implementation/Update Information

- **7/1/2015** New Policy; considered medically necessary when criteria is met.
- **4/1/2016** No policy statement changes.
- **4/1/2017** No policy statement changes.
- **5/1/2017** The Policy section was revised to include dosage information.
 Additional indications were added to the investigational policy statements as investigational. The intent of the policy was not changed.
- **4/1/18** No policy statement changes.
- **4/1/19** No policy statement changes.

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.