Pharmacogenetic Testing for Pain Management

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will not provide coverage for Pharmacogenetic Testing for Pain Management. This is considered investigational.

Note: This is a type of genetic testing that may be excluded in some contracts. Verify benefits prior to review for Medical Necessity.

When Policy Topic is covered
n/a

When Policy Topic is not covered
Genetic testing for pain management is considered investigational for all indications (see Considerations section).

Considerations
This policy does not address testing limited to cytochrome p450 genotyping, which is addressed in a separate policy. This policy also does not address testing for congenital insensitivity to pain.

Commercially available genetic tests for pain management consist of panels of single-nucleotide variants (SNVs) or (less commonly) individual SNV testing. SNVs implicated in pain management include the following (see also Table 1):

- **5HT2C** (serotonin receptor gene)
- **5HT2A** (serotonin receptor gene)
- **SLC6A4** (serotonin transporter gene)
- **DRD1** (dopamine receptor gene)
- **DRD2** (dopamine receptor gene)
- **DRD4** (dopamine receptor gene)
- **DAT1 or SLC6A3** (dopamine transporter gene)
- **DBH** (dopamine beta-hydroxylase gene)
- **COMT** (catechol O-methyltransferase gene)
- **MTHFR** (methylenetetrahydrofolate reductase gene)
- Y-aminobutyric acid (GABA) A receptor gene
- OPRM1 (opioid receptor gene)
- OPRK1 (opioid receptor gene)
- UGT2B15 (uridine diphosphate glycosyltransferase 2 family, member 15)
- Cytochrome p450 genes: CYP2D6, CYP2C19, CYP2C9, CYP3A4, CYP2B6, CYP1A2

Genetics Nomenclature Update

Human Genome Variation Society (HGVS) nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical evidence review updates starting in 2017 (see Table PG1). HGVS nomenclature is recommended by HGVS, the Human Variome Project, and the HUman Genome Organization (HUGO).

The American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) standards and guidelines for interpretation of sequence variants represent expert opinion from ACMG, AMP, and the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG2 shows the recommended standard terminology—“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to describe variants identified that cause Mendelian disorders.

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated variant</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td></td>
<td>Variant</td>
<td>Change in the DNA sequence</td>
</tr>
<tr>
<td></td>
<td>Familial variant</td>
<td>Disease-associated variant identified in a proband for use in subsequent targeted genetic testing in first-degree relatives</td>
</tr>
</tbody>
</table>

Table PG2. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

ACMG: American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology.

Genetic Counseling

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of...
the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

The following tests have been codified in CPT:

There is specific CPT coding for this testing:
81291: MTHFR (5, 10-methylenetetrahydrofolate reductase) (eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)

Code 81401 includes CYP3A4 testing:
81401: Molecular pathology procedure, Level 2 (eg, 2-10 SNPs, 1 methylated variant, or 1 somatic variant [typically using nonsequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat) includes – CYP3A4 (cytochrome P450, family 3, subfamily A, polypeptide 4) (eg, drug metabolism), common variants (eg, *2, *3, *4, *5, *6)

There is no specific CPT code for pain management testing panels. If there are CPT codes for the component tests in the panel and there is no algorithmic analysis used, the individual CPT codes may be reported. The unlisted molecular pathology code 81479 would be reported once for the balance of the panel.

<table>
<thead>
<tr>
<th>Description of Procedure or Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populations</td>
</tr>
</tbody>
</table>
| Individuals:
- With need for pharmacologic pain management | Interventions of interest are:
- Use of pharmacogenetics testing | Comparators of interest are:
- Management without pharmacogenetics testing | Relevant outcomes include:
- Test accuracy
- Test validity
- Other test performance measures
- Morbid events
- Health status measures
- Medication use |

While multiple pharmacologic therapies are available for the management of acute and chronic pain, there is a high degree of heterogeneity in pain response, particularly in the management of chronic pain, and in adverse events. This has prompted interest in better targeting pain therapies based on pharmacogenetic testing of genes relevant to analgesic pharmacokinetics or pharmacodynamics. A number of panel tests, having shown some association with the pharmacokinetics or pharmacodynamics of analgesic medications, have been developed to aid in pain management.
For individuals who have need for pharmacologic pain management who receive pharmacogenetic testing to target therapy, the evidence includes genome-wide association studies, which correlate specific genetic variants with pain medication requirements or measures of pain control, case-control and cohort studies that report differences in pain medication requirements or measures of pain control for different genotypes, as well as systematic reviews and meta-analysis. Relevant outcomes are test accuracy and validity, other test performance measures, morbid events, health status measures, and medication use. The evidence on the clinical validity of pharmacogenetic testing for pain management is characterized by a large number of studies that have evaluated associations between many different genetic variants and response to analgesic medication, risk of adverse events, and addiction risk. The largest body of evidence assesses the association between the OPRM1 A118G single-nucleotide variant and analgesic response and addiction risk, which has not consistently demonstrated significant associations. For other genes included in commercially available pain management panel tests, the evidence evaluating associations between variant and analgesic response, adverse events, or addiction risk is small. At present, the clinical utility of pharmacogenetic testing in pain management is poorly defined. Two studies were identified that reported on ways clinical management of pain can be modified based on genetic testing. The first study reported the use of preemptive genetic test for CYP2D6 metabolizer status to guide prescribing of codeine in pediatric patients but did not report the impact of the genetic testing algorithm on clinical end points such as adverse effects and pain control. The second study reported on the impact of a genetic panel test to guide selection of analgesics and reported significant improvement in total scores of a composite end point that measured analgesia, patient satisfaction, and the impact of drug-associated side effects compared to a historical control. However, methodologic limitations precluded assessment of the effects on outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Background

Pain is a universal human experience and an important contributor to outpatient and inpatient medical visits. The Institute of Medicine’s (IOM) reported in 2011 that common chronic pain conditions affect at least 116 million adults in the United States.\(^1\) Chronic pain may be related to cancer, or be what is termed *chronic noncancer pain*, which may be secondary to a wide range of conditions, such as migraines, low back pain, or fibromyalgia. Multiple therapeutic options exist to manage pain, including pharmacotherapies, behavioral modifications, and physical and occupational therapy, and complementary/alternative therapies. Nonetheless, IOM has reported that many individuals receive inadequate pain prevention, assessment, and treatment. Given that pain is an individual and subjective experience, assessing and predicting response to pain interventions, including pain medications, is challenging.

Pain Management

A variety of medication classes are available to manage pain: nonopioid analgesics, including acetaminophen and nonsteroidal anti-inflammatory drugs
(NSAIDs), opioid analgesics, which target central nervous system pain perception, and classes of adjuvants, including antiepileptic drugs (eg, gabapentin, pregabalin), antidepressants (eg, tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors), and topical analgesics. The management of chronic pain has been driven, in part, by the World Health Organization’s analgesic ladder for pain management, which was developed to manage cancer-related pain but has been applied to other forms of pain. The ladder outlines a stepped approach to pain management, beginning with nonopioid analgesia and proceeding to a weak opioid (eg, codeine), with or without an adjuvant for persisting pain, and subsequently to a strong opioid (eg, fentanyl, morphine), with or without an adjuvant for persisting or worsening pain. Various opioids are available in short- and long-acting preparations and administered through different routes, including oral, intramuscular, subcutaneous, sublingual, and transdermal.

Pharmacologic Treatment

For acute pain management, particularly postoperative pain, systemic opioids and nonopioid analgesics remain a mainstay of therapy. However, there has been growing interest in using alternative, nonsystemic treatments in addition to or as an alternative to systemic opioids. These options include neuraxial anesthesia, including intraoperative epidural or intrathecal opioid injection, which can provide pain relief for up to 24 hours postoperatively, and postoperative indwelling epidural anesthesia with opioids and local anesthetics, which may be controlled with a patient-controlled anesthesia pump. Postoperative peripheral nerve blocks may also be used.

While available pain management therapies are effective for many patients, there is a high degree of heterogeneity in pain response, particularly for chronic pain. In addition, many opioids are associated with significant risk of adverse events, ranging from mild (eg, constipation) to severe (eg, respiratory depression), and are associated with risk of dependence, addiction, and abuse. Limitations in currently available pain management techniques have led to interest in the use of pharmacogenetics to improve the targeting of therapies and prediction and avoidance of adverse events.

Genetics of Pain Management

Genetic factors may contribute to a range of aspects in pain and pain control, including predisposition to conditions that lead to pain, pain perception, and the development of comorbid conditions that may affect pain perception. Currently available genetic tests relevant to pain management assess single-nucleotide variants (SNVs) in single genes potentially relevant to pharmacokinetic or pharmacodynamic processes.

Genes related to these clinical scenarios include, broadly speaking, those involved in neurotransmitter uptake, clearance, and reception; opioid reception; and hepatic drug metabolism. Panels of genetic tests have been developed and proposed for use in the management of pain. Genes identified as being relevant to pain management and currently available panels are summarized in Table 1.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus</th>
<th>Gene Product Function</th>
<th>Potential Role in Pain Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>5HT2C (serotonin receptor gene)</td>
<td>Xq23</td>
<td>1 of 6 subtypes of serotonin receptor, which is involved in release of dopamine and norepinephrine</td>
<td></td>
</tr>
<tr>
<td>5HT2A (serotonin receptor gene)</td>
<td>13q14-21</td>
<td>Another serotonin receptor subtype</td>
<td>Variants (ie, 102T/C) associated with variation in pain threshold</td>
</tr>
<tr>
<td>SLC6A4 (serotonin transporter gene)</td>
<td>17q11.2</td>
<td>Clears serotonin metabolites from synaptic spaces in the CNS</td>
<td></td>
</tr>
<tr>
<td>DRD1 (dopamine receptor gene)</td>
<td>5q35.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRD2 (dopamine receptor gene)</td>
<td>11q23.2</td>
<td>G-protein-coupled receptors that have dopamine as their ligands</td>
<td>DRD4 VNTR associated with presence of pain-related disorders (fibromyalgia, TMJ syndrome, migraine)</td>
</tr>
<tr>
<td>DRD4 (dopamine receptor gene)</td>
<td>11p15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAT1 or SLC6A3 (dopamine transporter gene)</td>
<td>5p15.33</td>
<td>Mediates dopamine reuptake from synaptic spaces in the CNS</td>
<td></td>
</tr>
<tr>
<td>DBH (dopamine beta-hydroxylase gene)</td>
<td>9q34.2</td>
<td>Catalyzes the hydroxylase of dopamine to norepinephrine; active primarily in adrenal medulla and postganglionic synaptic neurons</td>
<td></td>
</tr>
<tr>
<td>COMT (catechol O-methyltransferase gene)</td>
<td>22q11.21</td>
<td>Responsible for enzymatic metabolism of catecholamine neurotransmitters dopamine, epinephrine, and norepinephrine</td>
<td>Val158Met variant associated with alterations in emotional processing and executive function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other variants have been associated with pain sensitivity</td>
</tr>
<tr>
<td>MTHFR (methylenetetrahydrofolate reductase gene)</td>
<td>1p36.22</td>
<td>Converts folic acid to methylfolate, a precursor to norepinephrine, dopamine, and serotonin neurotransmitters</td>
<td>Multiple variants identified, which are associated with a wide variety of clinical disorders</td>
</tr>
<tr>
<td>GABA A receptor gene</td>
<td>5q34</td>
<td>Ligand-gated chloride channel that responds to GABA, a major inhibitory neurotransmitter</td>
<td>1519T>C GABA A 6 gene variant associated with methamphetamine dependence</td>
</tr>
<tr>
<td>OPRM1 (μ-opioid receptors gene)</td>
<td>6q25.2</td>
<td>G-protein coupled receptor that is primary site of action for commonly used opioids, including morphine,</td>
<td>A118G variant (rs1799971) associated with reduced pain sensitivity and opioid requirements</td>
</tr>
<tr>
<td>Gene</td>
<td>Locus</td>
<td>Gene Product Function</td>
<td>Potential Role in Pain Management</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OPRK1 (κ-opioid receptor</td>
<td>8q11.23</td>
<td>Binds the natural ligand dynorphin and synthetic ligands</td>
<td>Variants associated with the risk for opioid addiction</td>
</tr>
<tr>
<td>gene)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGT2B15 (uridine diphosphate glycosyltransferase 2 family, member 15)</td>
<td>4q13.2</td>
<td>Member of UDP family involved in the glycosylation and elimination of potentially toxic compounds</td>
<td>Tamoxifen, diclofenac, naloxone, carbamazepine, and benzodiazepines inhibit UGT2B7 potentially leading to opioid hyperalgesia</td>
</tr>
<tr>
<td>Cytochrome p450 genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2D6</td>
<td>22q13.2</td>
<td>Hepatic enzymes responsible for the metabolism of a wide variety of medications, including analgesics</td>
<td>CYP2D6 is primary metabolizer for multiple oral opioids; metabolizer phenotype associated with variability in opioid effects</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>10q23.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2C9</td>
<td>10q23.33</td>
<td></td>
<td>Involved in metabolism of up to 60% of clinically used drugs</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>7q22.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2B6</td>
<td>19q13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP1A2</td>
<td>15q24.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNS: central nervous system; CYP: cytochrome; GABA: γ-aminobutyric acid; TMJ: temporomandibular joint; UG: uridine diphosphate glycosyltransferase; VNTR: varying number of tandem repeats.

Commercially Available Genetic Tests for Pain Management

Several test labs market panel tests or individual tests designed to address 1 or more aspects of pain management, including but not limited to drug selection, drug dosing, or prediction of adverse events. Specific variants included in the panels are shown in Table 2.

- **GeneSight® Analgesic** (Assurex Health, Mason, OH) is a genetic panel test intended to analyze “how patients’ genes can affect their metabolism and possible response to FDA [U.S. Food and Drug Administration]-approved opioids, NSAIDs and muscle relaxants commonly used to treat chronic pain.” Results are provided with a color-coded report based on efficacy and tolerability, which displays those medications that should be used as directed, used with caution, or used with increased caution and more frequent monitoring. The company’s website does not specify the testing methods. Publications describing other tests provided by the company specify that testing is conducted via SNV sequencing performed via multiplex polymerase chain reaction.
- **Proove Biosciences** (Irvine, CA) offers several genetic panels that address pain control. The Proove® Opioid Risk Panel includes 11 genes intended to predict opioid abuse and failure of opioid therapy. Genetic testing results are provided with an overall Dependence Risk Index. The company also
markets the Proove® Pain Perception panel, which is a test for SNVs in several genes related to pain perception, including COMT and at least 3 other genes. Results are provided with a report that stratifies patients’ pain sensitivity based on COMT haplotype. In addition, Proove Biosciences offers panels designed to predict good and poor responders to opioid therapies and nonopioid pain therapies—the Proove® Opioid Response panel and the Proove® Non Opioid Response, respectively. Genetic testing for these panels is conducted by sequencing of target regions with reverse-transcription polymerase chain reaction.

- Pain Medication DNA Insight™ (Pathway Genomics, San Diego, CA) is a panel test intended to identify genetic variants that affect how an individual will respond to the analgesic effects of certain types of pain medications. The results report includes the genotype/SNV for each gene included, along with a description of the toxicity risk, dose required, medication efficacy, or plasma concentration based on genotype results for a range of medications used for pain management, primarily opioids. The testing method is not specified on the company’s website.
- Millennium PGTSM (Pain Management) (Millennium Health, San Diego, CA) is a genetic panel test intended to help physicians select pain medication. The panel analyzes 11 genes related to pain management; results are provided with a proprietary Millennium Analysis of Patient Phenotype report that provides decision support for medications that may be affected by the patient’s genotype.
- Molecular Testing Labs™ Pain Management Panel (Molecular Testing Labs, Vancouver, WA) is a panel designed to evaluate the metabolism of pain relievers. The manufacturer’s website states that the test evaluates “a number of relevant genes coding for the metabolism of a wide variety of pain relief drugs,” but the specific genes tested are not readily described.
- Genelex (Seattle, WA) offers several pharmacogenomic panels, one of which (the YouScript® Analgesic Panel) focuses on genes relevant to pain management.
- AltheaDx (San Diego) offers IDgenetix® pain tests that analyze the genes and genetic variants involved in the metabolism of opioids, NSAIDs, and other pain drugs as well as variations in pharmacodynamic genes, such as the μ-opioid receptor gene (OPRM1).

Other laboratories, including CompanionDx (Houston, TX), ARUP Laboratories (Salt Lake City, UT), and AIBioTech (Richmond, VA), which markets the PersonaGene™ Genetic Panel, offer panels of CYP450 genes. Panels that are restricted to CYP450 genes are beyond the scope of this evidence review and are discussed in separate policy. (cytochrome p450 testing).

In addition to the available panel tests, several labs offer genetic testing for individual genes that are included in some of the panels, including the MTFHR, CYP450, and OPRM1 genes (see Table 2).
<table>
<thead>
<tr>
<th>Gene</th>
<th>Proove Opioid Risk (Proove Biosciences)</th>
<th>Proove Pain Perceptio n (Proove Biosciences)</th>
<th>GeneSigh tRx Analgesic (AssureRx Health)</th>
<th>Pain Medication DNA Insight (Pathway Genomics)</th>
<th>Millenniu m PGT (Millennium Health)</th>
<th>YouScript Analgesic (Genelex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC6A4 (5-HTT; serotonin transporter)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5HT2A (serotonin receptor)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DRD1 (dopamine receptor)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DRD2 (dopamine receptor)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DRD4 (dopamine receptor)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DAT1 (dopamine transporter)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DA beta-hydroxylase</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COMT (catechol O-methyltransfe rase)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MTHFR</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GABA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPRK1 (κ-opioid receptor)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPRM1 (μ-opioid receptor)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VKORC1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UGT2B15</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CYP genes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CYP1A2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CYP3A5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

CYP: cytochrome; GABA: γ-aminobutyric acid; 5-HHT: hereditary hemorrhagic telangiectasia type 5.
Regulatory Status
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). The Proove Narcotic Risk and Pain Perception panel, the GeneSight Analgesic panel, the Pathway Genomics Pain Medication DNA Insight panel, and the Millennium PGT (Pain Management) panel are available under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration (FDA) has chosen not to require any regulatory review of this test.

No FDA-approved genetic tests for pain management were identified.

Rationale
This evidence review was originally created in January 2015 and has been updated regularly with searches of the MEDLINE database. The original literature search was limited to studies published after 2004. The most recent literature review was performed through March 23, 2017 (see Appendix Table 1 for genetic testing categories).

Validation of the clinical use of any genetic test focuses on 3 main principles: (1) analytic validity, which refers to the technical accuracy of the test in detecting a variant that is present or in excluding a variant that is absent; (2) clinical validity, which refers to the diagnostic performance of the test (sensitivity, specificity, positive and negative predictive values) in detecting clinical disease; and (3) clinical utility (ie, how the results of the diagnostic test will be used to change management of the patient and whether these changes in management lead to clinically important improvements in health outcomes). Following is a summary of the key literature.

Genetic Testing for the Management of Acute and Chronic Pain

Clinical Context and Test Purpose
The purpose of genetic testing for management of acute and chronic pain is to

- Select appropriate pain medications or avoid use of inappropriate pain medications
 - To identify individuals likely or unlikely to respond to a specific medication.
 - To identify individuals at high risk of adverse drug reactions.
 - To identify individuals at high risk of opioid addiction or abuse.
- Optimize the dose selection or frequency by:
 - Identifying individuals who are likely to require higher or lower doses of a drug.

The questions addressed in this evidence review are: (1) Is there evidence that genetic testing for pain management has clinical validity?; and (2) Does patient
management change in a way that potentially improves outcomes as a result of genetic testing?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is patients with chronic and acute pain, including conditions such as cancer, migraines, low back pain, and fibromyalgia.

Interventions
Testing for individual genes is available for most, or all, or the genes listed in Table 2, as well as for a wider range of genes. Because of the large number of potential genes, panel testing is available from a number of genetic companies. These panels include a variable number of genes that broadly test potential response to 4 relevant medication classes: opioids, nonsteroidal anti-inflammatory drugs, muscle relaxants, and opioid dependency. Examples of commercially available genetic panels for pain management are listed in Table 3.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Panel Name</th>
<th>No. of Genes Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proove Biosciences</td>
<td>Proove Opioid Risk</td>
<td>11</td>
</tr>
<tr>
<td>Proove Biosciences</td>
<td>Proove Pain Perception</td>
<td>1</td>
</tr>
<tr>
<td>AssureRx Health</td>
<td>GeneSightRx Analgesic</td>
<td>7</td>
</tr>
<tr>
<td>Pathway Genomics</td>
<td>Pain Medication DNA Insight</td>
<td>3</td>
</tr>
<tr>
<td>Millennium Health</td>
<td>Millennium PGT</td>
<td>14</td>
</tr>
<tr>
<td>Genelex</td>
<td>YouScript Analgesic</td>
<td>7</td>
</tr>
<tr>
<td>AltheaDx</td>
<td>IDgenetix</td>
<td>9</td>
</tr>
</tbody>
</table>

Comparators
The comparator of interest is standard pain management without genetic testing.

Outcomes
Specific outcomes in each of these categories are listed in Table 4.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbid events</td>
<td>Opioid addiction, adverse events</td>
</tr>
<tr>
<td>Health status measures</td>
<td>Pain relief, functional status</td>
</tr>
<tr>
<td>Medication use</td>
<td>No. of unsuccessful medication trials, no. of medications needed, dose of medication, dose frequency</td>
</tr>
</tbody>
</table>

The potential beneficial outcomes of primary interest would be improvement in pain, functioning, and quality of life.

The potential harmful outcomes are those resulting from a false test result. False-positive or -negative test results can lead to initiation of unnecessary treatment and adverse effects from that treatment or under-treatment.
Timing
Genetic testing may be used for pain management planning before a procedure associated with acute pain or to evaluate an individual with difficulty managing chronic pain.

Setting
Patients with chronic and acute pain are likely to be managed by a wide variety of specialties such as chiropractors, general physicians, physiatrists (rehabilitation physicians) rheumatologists, orthopedic surgeons, oncologist, pain management specialist, physical therapists, and acupuncturists. Most patients are likely to be tested in an outpatient setting. Referral for genetic counseling is important for explanation of genetic disease, heritability, genetic risk, test performance, and possible outcomes.

Analytic Validity
No published studies were identified that specifically evaluated the analytic validity of the test as performed commercially. No information was identified in the published literature or on manufacturers’ websites concerning the genetic testing methods used for analysis. As a result, it is not possible to determine the analytic validity of the testing process. In general, Sanger sequencing or next-generation sequencing methods would be expected to have high analytic validity.

Section Summary: Analytic Validity
No studies were identified that specifically addressed the analytic validity of commercially available tests.

Clinical Validity
Evidence on the clinical validity of genetic testing for pain management primarily consists of genome-wide association studies (GWAS) that correlate specific genetic variants with pain medication requirements or measures of pain control and case-control and cohort studies that report differences in pain medication requirements or measures of pain control for different genotypes. A comprehensive review of the GWAS and case control studies for all of these genes is beyond the scope of this evidence review. However, some of the representative literature, with a focus on studies published within the last 10 years, in this area is discussed next.

Genetic Variants and Analgesic Requirements
A variety of studies have evaluated the association of various genes with pain sensitivity or efficacy of pain medication, either elicited directly from reports of pain or indirectly from analgesic dose requirements. Studies that evaluate the association between single-nucleotide variants (SNVs) and analgesic dose requirements may provide a more objective outcome measurement of pain control; although this design makes it difficult to separate the effects of genotype on pain sensitivity from those of genotype on pain medication efficacy, these types of studies most directly translate to the clinical use of dose optimization.
Genetic Variants and Analgesic Requirements: Multigene Studies

Several studies have evaluated the association between multiple genes and SNVs and pain control. Klepstad et al (2011) reported results of a large gene association study that evaluated the impact of variability in multiple genes on opioid use among 2294 cancer pain patients. Patients were enrolled from 17 European centers and were considered eligible if they had malignant disease and were using an opioid for moderate or severe pain (step III or higher on the World Health Organization treatment ladder for cancer pain). The authors assessed a large number of SNVs in multiple candidate genes, which had previously been associated with pain control:

- **OPRM1** (μ-opioid receptor gene; 9 SNVs);
- **OPRD1** (δ-opioid receptor gene; 3 SNVs);
- **OPRK1** (κ-opioid receptor gene; 1 SNV);
- **ARRB** (beta-arrestin gene; 7 SNVs);
- **GNAZ** (G nucleotide-binding protein 1 gene; 1 SNV);
- **HIN1** (histidine trinucleotide binding protein 1 gene; 5 SNVs);
- **Stat6** (signal transducer and activator of receptor 6 gene; 3 SNVs);
- **ABCB1** (p-glycoprotein transporter gene; 8 SNVs);
- **COMT** (catechol O-methyltransferase gene; 6 SNVs);
- **ADRA21** (alpha 2A adrenergic receptor gene; 3 SNVs);
- **MC1R** (melanocortin 1 receptor gene; 1 SNV);
- **TACR1** (neurokinin 1 receptor gene; 10 SNVs);
- **GCH1** (GTP cyclohydrolase 1 gene; 3 SNVs);
- **DRD2** (dopamine receptor D2 gene; 11 SNVs);
- **DRD3** (dopamine receptor D3 gene; 8 SNVs);
- **HTR3A, -3B, -2A, -3C, -3D, -3E, 1, and 4 genes** (serotonin receptors; 36 SNVs);
- **HRH1** (histamine receptor H1 gene; 4 SNVs);
- **CNR1** (cannabinoid receptor 1 gene; 3 SNVs).

Patients' primary opioids were morphine (n=830), oxycodone (n=446), fentanyl (n=699), or other opioids (n=234). Patients were randomized to 2 groups, with two-thirds serving as a development sample and one-third serving as a validation sample. The authors used appropriate measures to control for type I error related to multiple comparisons. Ten SNVs investigated had a minor allele frequency of less than 0.05 and/or were not in Hardy–Weinberg equilibrium and were excluded from further analyses. For the primary outcome of opioid dosage, no SNVs were consistently associated with dosage in both the development and validation samples. The authors note that their study design (cross-sectional evaluation of cancer patients already managed with opioids) did not permit determining the relative genetic influence of pain perception and opioid efficacy.

In another study in the same patient cohort as the Klepstad study, Scarpi et al (2014) reported on genetic differences between patients (total N=2294 patients) with (n=577) and without cancer-induced bone pain (n=1624) and, among patients with cancer-induced bone pain, genetic differences in opioid response.
No SNV haplotypes were associated with the presence of cancer-induced bone pain or opioid response after correction for multiple comparisons.

In another relatively large study, Lotsch et al (2009) evaluated the effect of SNVs in multiple candidate genes on pain control among 352 patients treated in outpatient tertiary care centers. The authors assessed the following SNVs:

- **OPRM1** (μ-opioid receptor) 118A>G;
- **COMT** (catechol O-methyltransferase) 472G>A;
- **ABCB1** (p-glycoprotein transporter) 1236C>T, 2677G>T(A), and 3435C>T;
- **MC1R** (melanocortin 1 receptor) 29insA, 451C>T, 478C>T, and 880G>C;
- Functionally impaired **CYP2D6***41 allele.

Patients were managed with multiple opioids, most commonly oral tilidine (n=81 [15.6%]), oral tramadol (n=81 [15.6%]), and intravenous or subcutaneous morphine (n=74 [14.3%]). Opioid doses were converted to oral morphine equivalents. In linear regression, the **ABCB1** 3435C>T variant was the only factor significantly associated with opioid dose (p=0.004). In linear regression, the **OPRM1** 118A>G variant was the only candidate gene significantly associated with 24-hour pain score (p=0.041). No genetic associations were found with opioid-related adverse events, including nausea/vomiting, constipation, fatigue, or laboratory abnormalities.

Blanco et al (2016) reported on the association between SNVs in the **UGT2B7**, **CYP3A4**, and **OPRM1** variants and transdermal buprenorphine pain control in a cohort of 107 patients with critical limb ischemia awaiting revascularization. The **UGT2B7** and **OPRM1** variants were not associated with response to buprenorphine pain control, as measured on a visual analog scale. In contrast, carriers of the **CYP3A4** AA genotype had significantly better pain response (p=0.003).

Genetic Variants and Analgesic Requirements: OPRM1 Genotype

The largest body of research assessing the association between SNVs in a specific gene and pain management appears to be for **OPRM1** genotype, most often for the A118G SNV (rs1799971). While multiple studies have suggested a link between **OPRM1** genotype and dose/intensity of required analgesia, the association is inconsistent across studies. Further, the wide variety of patient population (women in labor, patients undergoing surgery, patients with cancer), genetic variant, and outcome measures (dose, frequency, timing, pain control) used makes it difficult to understand collectively the association between a genetic variant and an analgesic requirement. These studies are summarized in Table 5.

Genetic Variants and Analgesic Requirements: CYP450 Genotype

A full review of the association between **CYP450** genotypes and medications used for pain is beyond the scope of this review (see evidence review 2.04.38 [cytochrome p450 genotyping]). However, a summary of recent studies focusing on **CYP2D6** metabolism status and pain management, primarily in the use of opioid medications, is outlined next.
CYP450 and Metabolism of Opioids

Jannatto et al (2009) evaluated the association between steady-state concentrations of the opioids methadone, oxycodone, hydrocodone, and tramadol and CYP2D6 genotype among 61 patients being treated for chronic pain. Most patients (54%) were extensive metabolizers (EM), while 41% were intermediate metabolizers (IM), and 5% were poor metabolizers (PM). No statistically significant associations were seen with CYP2D6 metabolizer status and opioid steady-state concentration. For CYP2D6 EMs, 21% had complete pain relief, 58% had partial pain relief, and 21% had no relief, whereas for CYP2D6 IMs, 20% had complete pain relief, 68% had partial pain relief, and 12% had no pain relief, while all CYP2D6 PMs had partial pain relief (statistical comparisons not reported).

CYP450 and Metabolism of Tramadol

Lassen et al (2015) reported on results for a systematic review of the pharmacogenetics of tramadol, which included CYP2D6 and other genes encoding other CYP450 enzymes and enzymes involved in tramadol metabolism. Reviewers included 54 articles, including 43 cohort and case-control studies, 3 case reports, 6 in vitro studies, and 2 animal studies. The review was primarily descriptive, with the conclusion that CYP2D6 is the major genetic factor in tramadol metabolism, while other genetic factors have a limited associated body of research.

Kirschheiner et al (2008) evaluated the association between CYP2D6 genotype and tramadol pharmacokinetics and pharmacodynamics among 25 healthy volunteers given tramadol (11 considered ultrarapid metabolizers [UM], 11 EMs, and 5 PMs based on CYP2D6 genotype). The maximum plasma concentration of tramadol’s active metabolite was significantly higher for UM subjects than for EM subjects (mean difference, 14 ng/mL; 95% confidence interval [CI], 2 to 26 ng/mL; p=0.005). The mean increase in pain tolerance from baseline to 4 hours after tramadol intake was 1 second, 20 seconds, and 36 seconds in the PM, EM, and UM groups, respectively. UMs demonstrated a stronger miosis after tramadol (maximum decrease in pupillary diameter after tramadol: 1 mm, 1.4 mm, and 2.2 mm for PM, EM, and UM groups, respectively). The authors conclude that UMs were more sensitive to the effects of tramadol.

In an earlier case-control study, Wang et al (2006) reported on an association between CYP2D6*10 C188T variants and postoperative tramadol consumption in 71 patients following gastrectomy.

CYP450 and Metabolism of Codeine

Kirschheiner et al (2007) evaluated the association between CYP2D6 genotype and codeine metabolism among 25 healthy volunteers given a single 30-mg dose of codeine (11 UMs, 11 EMs, and 5 PMs based on CYP2D6 genotype). The area under the curve (AUC) for plasma concentration of morphine (the active metabolite of codeine) versus time was significantly greater for UMs (16 µg/h/L vs 11 µg/h/L; p=0.02). UMs were more likely to report sedation than EMs (91% vs 50%; p=0.03).
Baber et al (2015) reported on the genetic variability of pain control in a cohort of 98 women prescribed codeine for pain after a cesarean section. In this study, CYP2D6 genotype was not associated with postoperative pain score or codeine dose. However, UGT2B7 and OPRM1 variants, coding for other enzymes involved in codeine metabolism, were associated with codeine dose requirements. In multivariable analysis, the presence of the UGT2B7 rs7439366 variant and the OPRM1 rs1799971 were significantly predictive of mean codeine input (regression coefficient, -0.30 [95% CI, -0.086 to -0.021] and 0.34 [95% CI, 0.032 to 0.10], respectively).

Table 5: Summary of Clinical Validity Studies of OPRM1 Genotype and Pain Management

<table>
<thead>
<tr>
<th>Study</th>
<th>SNV</th>
<th>Population</th>
<th>Primary Outcomes</th>
<th>Main Results</th>
</tr>
</thead>
</table>
| Camorcia et al (2012) | OPRM1 A118G | 57 women undergoing epidural anesthesia for labor | ED50 for epidural sufentanil dose (estimated from up-down sequence and probit regression) | Median effective dose of epidural sufentanil in nulliparous women in spontaneous labor lower in women carrying the variant G118 allele of OPRM1:
 - Estimated ED50 for OPRM1 WT homozygotes (A118) vs heterozygotes and homozygotes carrying G allele (G118):
 - A118: ED50, 25.3 µg (95% CI, 23.2 to 26.4 µg)
 - G118: ED50, 20.2 µg (95% CI, 14.2 to 23.6; p=0.033) |
| Chou et al (2006) | OPRM1 A118G | 120 patients undergoing total knee arthroplasty treated with morphine PCA who required rescue morphine | No. of morphine PCA demands (1st 24 h, 2nd 24 h, 1st 48 h postoperatively) Total morphine dose | No. of morphine demands significantly higher for heterozygotes (GA) and homozygotes (GG) carrying G allele vs WT homozygotes (AA):
 - 1st 24 h: morphine demands 36.1 for GG vs 24.3 for AA (p=0.033) and vs 22.2 for AG (p=0.021)
 - 1st 48 h: 57.8 for GG vs 39 for AA (p=0.026) and vs 35.3 for AG (p=0.012)
 - Total morphine dose significantly higher for GA and GG vs AA: |
<table>
<thead>
<tr>
<th>Study</th>
<th>SNV</th>
<th>Population</th>
<th>Primary Outcomes</th>
<th>Main Results</th>
</tr>
</thead>
</table>
| **Fukuda et al (2009)**²¹ | Multiple OPRM1 SNVs | 280 patients undergoing mandibular sagittal split ramus osteotomy | ▪ Pain perception latency
▪ Perioperative fentanyl dose
▪ Pain intensity on 100-mm VAS at 3 and 24 h postop | • For the A118 G SNV (rs1799971):
 o No significant differences in perioperative fentanyl dose or pain intensity on VAS at 3 and 34 h postop (WT AA homozygote vs heterozygotes and homozygotes carrying G allele)
 • For IVS3+ A8449G SNV (representing the complete linkage disequilibrium block; rs9384179):
 o 24-h postop fentanyl dose higher for AA: 2.5 μg/kg for AA vs 1.55 μg/kg for AG/GG (p<0.01) |
| **Ginosar et al (2013)**²² | OPRM1 A118G SNV | 125 nulliparous women receiving combined spinal epidural-fentanyl anesthesia for labor | ▪ Time to first request for additional analgesia
▪ Pain intensity at first request for additional anesthesia on VAS
▪ Intensity of anesthetic-related pruritus on VAS | • No difference in time to request for additional analgesia or VAS at request for analgesia for AA homozygotes vs heterozygotes (GA) and homozygotes (GG) carrying G allele:
 o Time to analgesia request: 110.1 min for AA vs 108.3 min for GA and GG (p=0.836)
 o VAS (0-100) at analgesia request: 57.6 for AA vs 55.0 for GA and GG (p=0.470)
 • No difference in |
<table>
<thead>
<tr>
<th>Study</th>
<th>SNV</th>
<th>Population</th>
<th>Primary Outcomes</th>
<th>Main Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginosar et al (2009)</td>
<td>OPRM1 A118G SNV</td>
<td>99 patients receiving alfentanil PCA for</td>
<td>• PCA bolus requests</td>
<td>presence or intensity of pruritus based on genotype</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extracorporeal shock wave lithotripsy</td>
<td>• Alfentanil dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Alfentanil plasma concentration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Verbal analog pain scores</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Compared with WT AA genotype, heterozygotes (GA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and homozygotes (GG) carrying G allele had:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Higher alfentanil dose over 20 min (75.4 μg/kg vs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51.4 μg/kg, p=0.004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Higher no. of boluses attempted over 25 min (7.2 vs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4, p=0.015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Higher mean plasma alfentanil concentration (177</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ng/mL vs 139 ng/mL, p=0.034)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Higher mean VAS pain score (3.2 vs 2.1, p=0.047)</td>
<td></td>
</tr>
<tr>
<td>Hayashida et al (2008)</td>
<td>Multiple</td>
<td>138 patients undergoing major abdominal</td>
<td>• Postop opioid equivalent dose requirement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPRM1 SNVs</td>
<td>surgery receiving continuous postop epidural</td>
<td>• NRS pain score</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>opioid analgesia with rescue systemic opioids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and/or NSAIDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A118G SNV genotype significantly associated with</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>opioid requirement (p=0.009)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• None of the SNVs evaluated associated with NRS pain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>score</td>
<td></td>
</tr>
<tr>
<td>Kim et al (2013)</td>
<td>OPRM1 A118G SNV</td>
<td>196 patients undergoing laparoscopic or total</td>
<td>• 48-h cumulative postop fentanyl dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>abdominal hysterectomy managed postop with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>intravenous PCA with fentanyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• OPRM1 A118G variant not associated with 48-h fentanyl consumption:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o For A/A homozygotes: mean cumulative fentanyl dose, 1044.9 μg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o For A/G heterozygotes: mean cumulative fentanyl dose, 1019.8 μg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o For G/G homozygotes: mean cumulative</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>SNV</td>
<td>Population</td>
<td>Primary Outcomes</td>
<td>Main Results</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Kolesnikov et al (2011) | OPRM1 A118G SNV and COMT | 102 patients undergoing lower abdominal surgery managed postop with intravenous PCA with morphine | ▪ 48-h cumulative postop morphine dose | • OPRM1 A118G and COMT G1947A variants alone not associated with 48-h morphine consumption
 • Joint OPRM1 and COMT variants significantly associated with 48-h morphine consumption:
 o For OPRM1 G carriers and COMT G carriers: total morphine dose, 51.9 mg
 o For OPRM1 WT homozygotes: total morphine dose, 66.2 (p<0.05) |
| Landau et al (2008) | OPRM1 A118G SNV | 147 nulliparous women receiving combined spinal-epidural anesthesia with fentanyl for labor | ▪ ED50 after fentanyl analgesia (estimated by up-down sequential allocation in 50 subjects and random-dose allocation in 97 subjects) | • OPRM1 304 A/G variant associated with fentanyl dose requirement (median ED50 ratio for 304A homozygosity vs 304A/G heterozygotes and 304 G/G homozygotes):
 o For sequential allocation: median ED50 ratio, 1.51 (95% CI, 1.18 to 2.01; p=0.009)
 o For random allocation: median ED50 ratio, 2.14 (95% CI, 1.30 to 5.17; p=0.002) |
| Zhang et al (2010) | OPRM1 A118G SNV | 177 women undergoing total abdominal hysterectomy or myomectomy managed postop with intravenous PCA with fentanyl | ▪ 24-h mean VAS pain intensity
 ▪ 24-h fentanyl consumption | • OPRM A118G variants not associated with initial VAS scores or first 24-h mean VAS scores
 • OPRM A118G variants showed significant association with 24-h fentanyl consumption (p<0.05 for linear trend):
 o For A/A homozygotes: mean 24-h fentanyl consumption, 363 μg |
<table>
<thead>
<tr>
<th>Study</th>
<th>SNV</th>
<th>Population</th>
<th>Primary Outcomes</th>
<th>Main Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cajanus et al</td>
<td>OPRM1 A118G SNV</td>
<td>1000 women undergoing breast cancer surgery managed with intravenous oxycodone</td>
<td>▪ Oxycodone dose required for adequate postop analgesia</td>
<td>▪ OPRM A118G variants associated with oxycodone dose required for the first state of adequate analgesia (regression coefficient, 0.016; p=0.003)</td>
</tr>
<tr>
<td>Liu et al</td>
<td>Multiple OPRM1 SNVs</td>
<td>178 women undergoing elective endometrial polypectomy or hysteroscopic cervical canal ring resection managed intraoperatively with remifentanil</td>
<td>▪ Pain intensity at dilatation and intraoperatively on VAS</td>
<td>▪ Presence of 2 minor (G) alleles at rs558025 significantly associated with intraoperative remifentanil requirement</td>
</tr>
<tr>
<td>Xu et al</td>
<td>OPRM1 A118G SNV</td>
<td>161 women undergoing elective cesarean delivery managed using PCEA with sufentanil and ropivacaine</td>
<td>▪ Total PCEA dose over 24 h postop</td>
<td>▪ No significant differences across OPRM1 genotype found in PCEA dose</td>
</tr>
<tr>
<td>Bialecka et al</td>
<td>IL6 (rs1800795: -174G>C)</td>
<td>196 individuals undergoing total hip replacement</td>
<td>▪ Dose, frequency, and timing of opioid requirement</td>
<td>▪ Presence of the G allele IL6 gene (-174G>C) variant found to be an independent factor predisposing to a higher dose and more frequent administration of opioids in the first days after total hip replacement</td>
</tr>
</tbody>
</table>

CI: confidence interval; ED50: median effective dose; NRS: numeric rating scale; NSAIDs: nonsteroidal anti-inflammatory drugs; PCA: patient-controlled anesthesia; PCEA: patient-controlled epidural analgesia; postop: postoperative; SNV: single-nucleotide variant; VAS: visual analog scale; WT: wild-type.
CYP450 and Metabolism of Oxycodone
Zwisler et al (2010) reported the results of a case-control study that found no difference in total oxycodone consumption between CYP2D6 EMs (14.7 mg) and PMs (13 mg; p=0.42) following surgery (primarily thyroid or hysterectomy) in 270 patients.\(^{33}\)

CYP450 and Metabolism of Fentanyl
Liao et al (2013) evaluated the association between CYP3A4 variants and interactions with OPRM1 A118G variants and postoperative fentanyl requirements among 97 patients undergoing radical gastrectomy.\(^{34}\) Patients with the CYP3A4*18B/*18B genotype used less fentanyl via patient-controlled analgesia in the 48 hours after surgery (16.3 μg/kg) compared with patients in the *1/*1 group (22.5 μg/kg; p=0.032). Although OPRM A118G variants were not significantly associated with cumulative fentanyl dose at 24 or 48 hours postsurgery, the joint genotype combination between CYP3A4 and OPRM1 was significantly associated with 48-hour cumulative fentanyl dose (p=0.021). VAS scores and frequency of adverse events (nausea, vomiting, dizziness) did not differ significantly across CYP3A4 groups.

Zhang et al (2011) reported no association between CYP3A5*3 variants and 24-hour postoperative fentanyl consumption in 203 women following total abdominal hysterectomy or myomectomy.\(^{35}\)

Genetic Variants and Analgesic Requirements: Other Gene Associations
While the largest body of research related to the clinical validity of genetic testing for pain management appears to be related to OPRM1 and CYP450 SNVs, the association between multiple other genes and responses to analgesics has been reported. A summary of studies evaluating the associations between some of these other genes and pain management outcomes are shown in Table 6.

Genetic Variants and Medication-Related Adverse Events
Some studies have evaluated the association between genetic variants and medication-related adverse events, which translate to a clinical use of dose optimization (to avoid an unwanted effect) OR to drug selection (appropriate drug) or avoidance (to identify individuals at high risk of adverse events).

Genetic Variants and Medication-Related Adverse Events: CYP2D6 and Respiratory Depression/Central Nervous System Depression
There has been particular interest in evaluating the role of CYP2D6 in the metabolism of codeine and other narcotics in children, particularly after tonsillectomy or adenoidectomy, and in nursing mothers after several cases of fatal overdoses. Codeine is metabolized to its active metabolite, morphine, via CYP2D6 activity. Individuals with higher than average CYP2D6 activity may have increased morphine formation, leading to higher toxicity risk, whereas those with lower than average CYP2D6 activity may have reduced morphine formation, leading to insufficient pain relief.
Madadi et al (2009) reported the results of a case-control study evaluating the association between maternal \textit{CYP2D6} variants and respiratory depression among infants of breastfeeding mothers treated with codeine. The study included 72 mother-child pairs whose mothers used codeine while breastfeeding, of which 17 (24\%) of breastfed infants were reported to exhibit central nervous system (CNS) depression while their mothers used codeine. CNS depression was by maternal report. Two (11.8\%) mothers of symptomatic infants were \textit{CYP2D6} UMs (in combination with a \textit{UGT2B7*2/*2} genotype), compared with 0\% of mothers among nonsymptomatic infants. Mothers of symptomatic cases were more likely to have a combined \textit{CYP2D6} UM and \textit{UGT2B7*2/*2} genotype than expected based on the average expected frequency (OR=8.4; 95\% CI, 4.7 to 47; p<0.001).

<table>
<thead>
<tr>
<th>Study</th>
<th>Gene(s)</th>
<th>Population</th>
<th>Primary Outcomes</th>
<th>Main Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aoki et al (2010) 37</td>
<td>\textit{5HT2A}</td>
<td>135 patients after open abdominal surgery, managed with continuous epidural anesthesia with opioids</td>
<td>• Index of analgesic requirement (expressed as equivalent dose of systemic pentazocine)
 • 5-point NRS pain score</td>
<td>• Total rescue analgesic plus antipyretic frequency higher for 102T/T vs T/C genotype (1.34 vs 0.84; p=0.011)
 • For female subjects:
 o Total rescue analgesic plus antipyretic frequency higher for 102T/T vs C/C genotype (1.75 vs 0.636; p=0.009)
 o Total rescue analgesic frequency higher for 102T/T vs T/C genotype (1.63 vs 0.533; p=0.003)
 o Total systemic pentazocine equivalent dose higher for 102T/T vs T/C (27.7 vs 9; p=0.016) and vs C/C (27.7 vs 8.18; p=0.044)
 • No significant association between genotype and NRS pain scores</td>
</tr>
<tr>
<td>Aoki et al (2013) 38</td>
<td>\textit{DRD4}</td>
<td>355 patients undergoing mandibular sagittal split ramus osteotomy</td>
<td>• Intraoperative fentanyl dose and postop PCA fentanyl dose
 • Spontaneous pain intensity on 100-mm VAS</td>
<td>• 24-h postop fentanyl use higher with shorter \textit{DRD4} VNTR: fentanyl dose 4.09 (\mu)g/kg for SHORT/SHORT vs 2.24 (\mu)g/kg for any LONG (p=0.0118)
 • 3-h VAS scores did not significantly differ among VNTR groups</td>
</tr>
<tr>
<td>Jensen et al (2009) 39</td>
<td>\textit{COMT} (val[158]met)</td>
<td>43 healthy subjects subjected to thermal pain after short-acting opioid (remifentanil) administration</td>
<td>• Pain intensity on VAS after 5 blocks of 30-s heat administration</td>
<td>• At all 5 points, presence of met allele associated with higher pain scores:
 o For met homozygotes vs val homozygotes: p=0.010 (difference in normalized pain score at time 5 estimated from chart: (\approx 0.5))</td>
</tr>
<tr>
<td>Study</td>
<td>Gene(s)</td>
<td>Population</td>
<td>Primary Outcomes</td>
<td>Main Results</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Rakvag et al (2005)** | COMT | 207 cancer patients receiving morphine therapy | • Daily morphine dose
• Measure of “average pain” in the prior 24 h using BPI | • COMT Val158Met variant associated with morphine requirements (p=0.025):
 o For Val/Val genotype (n=44): mean 24-h morphine requirement, 155 mg/24 h
 o For Val/Met genotype (n=96): mean 24-h morphine requirement, 117 mg/24 h
 o For Met/Met genotype (n=67): mean 24-h morphine requirement, 95 mg/24 h
• Other symptoms, including pain scores and adverse effect symptoms, did not differ significantly across groups |
| **Kim et al (2006)** | Multiple genes | 221 adults undergoing 3rd molar extraction including at least 1 impacted 3rd molar | • Pain intensity on VAS before and after ketorolac administration | • COMT rs740603 showed significant association with maximum postop pain (p=0.039):
 o For A/A homozygotes: mean, 52.6 (95% CI, 44.5 to 60.6)
 o For A/G heterozygotes: mean, 62.8 (95% CI, 58.4 to 67.2)
 o For G/G homozygotes: mean, 63.9 (95% CI, 57.5 to 64.5)
• SLC6A2 rs40434 showed significant association with analgesia onset time (p=0.011):
 o For G/G homozygotes: mean, 20.2 min (95% CI,

<table>
<thead>
<tr>
<th>Study</th>
<th>Gene(s)</th>
<th>Population</th>
<th>Primary Outcomes</th>
<th>Main Results</th>
</tr>
</thead>
</table>
| Kim et al (2013) | SLC6A4 | Multiple 196 patients undergoing laparoscopic or total abdominal hysterectomy | • 48-h cumulative postop fentanyl dose • SLC6A4 rs2066713 showed significant association with onset of postop pain (p=0.025):
 o For T/T homozygotes: mean, 145.7 min (95% CI, 124.3 to 167.0 min)
 o For T/C heterozygotes: mean, 124.4 min (95% CI, 115.4 to 133.5 min)
 o For C/C homozygotes: mean, 117.6 min (95% CI, 105.2 to 130.0 min) |
| | OPRM1 (A118G) | | |
| | CYP3A4 | | |
| | ABCB1 | | |
| Kosek et al (2009) | 5-HTT | 43 healthy subjects subjected to thermal pain after short-acting opioid (remifentanil) | • Pain intensity on VAS after 5 blocks of 30-s heat administration • OPRM1 A118G variant not associated with 48-h fentanyl consumption:
 o For A/A homozygotes: mean cumulative fentanyl dose, 1044.9 µg
 o For A/G heterozygotes: mean cumulative fentanyl dose, 1019.8 µg
 o For G/G homozygotes: mean cumulative fentanyl dose, 1013.5 µg
 • CYP3A4*18 and *3 variants not significantly associated with 48-h fentanyl consumption |
| | | | |
| | | | |

Pharmacogenetic Testing for Pain Management 2.04.131
Genetic Variants and Medication-Related Adverse Events: CYP2D6 and Other Adverse Events

The effect of *CYP450* genotype on outcomes other than respiratory depression has also been evaluated. Prows et al (2014) conducted a prospective study to evaluate factors, including *CYP26* genotype, associated with codeine-related adverse drug events in children following tonsillectomy. The study enrolled 249 children ages 5 to 19 years scheduled to undergo tonsillectomy. Symptoms were recorded in a symptom diary. Of 134 children given codeine, 106 (79%) reported at least 1 adverse event, most commonly lightheadedness and dizziness in white children and nausea and vomiting in African American children. The presence of a high risk *CYP2D6* gene (EM or IM), compared with a low risk *CYP2D6* gene (IM or PM), was associated with a higher adverse drug reaction risk (p=0.044).

Candiotti et al (2005) evaluated the association between *CYP2D6* gene copy number and the presence of postoperative nausea and vomiting after prophylaxis with the antiemetic ondansetron among 243 women undergoing general anesthesia. Eighty-eight women experienced postoperative nausea and/or vomiting requiring breakthrough medication. Metabolizer status, based on number of functioning *CYP2D6* copy numbers (PM, IM, EM, UM), was significantly associated with vomiting incidence, with vomiting occurring in 5 (45.5%) of 11 UMs, compared with 1 (8.3%) of 12 PMs, 5 (16.7%) of 30 IMs, and 26 (14.7%) of 176 EMs (p=0.007 for UMs vs all other groups). However, nausea was not associated with genotype.

Genetic Variants and Medication-Related Adverse Events: OPRM1 and Fentanyl-Associated Nausea and Vomiting

The association between other genes and analgesic-related adverse events has also been reported. Zhang et al (2011) evaluated the association between the *OPRM1* A118G variant and fentanyl-associated postoperative nausea and vomiting among 165 women undergoing elective total abdominal hysterectomy or myomectomy who received intravenous patient-controlled fentanyl - postoperatively. The study found no statistically significant differences between genotype groups in terms of frequencies or scores of nausea and vomiting. Tsai et al (2010) evaluated the association between the *OPRM1* A118G variant and

<table>
<thead>
<tr>
<th>Study</th>
<th>Gene(s)</th>
<th>Population</th>
<th>Primary Outcomes</th>
<th>Main Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>administration</td>
<td>subjects with low 5-HTT expression had better analgesia vs subjects homozygous for 5-HTTLPR LA allele (p<0.02; VAS absolute difference estimated from chart: ≈20 mm).</td>
<td>administration, subjects with low 5-HTT expression had better analgesia vs subjects homozygous for 5-HTTLPR LA allele (p<0.02; VAS absolute difference estimated from chart: ≈20 mm).</td>
<td></td>
</tr>
</tbody>
</table>
pruritus related to epidural morphine used as postoperative analgesia among 212 women who received epidural morphine for post-Caesarian section analgesia. Pruritus was evaluated using the Itching Severity Scale (ISS; score range, 0-4), with significant pruritus considered to be an ISS score of 2 to 4. Among the 25 patients with the OPRM1 GG genotype, 3 (12%) had pruritus with ISS grade 2 to 4, while among the 187 patients with the OPRM1 AA or AG genotype, 59 (31.6%) had significant pruritus (p=0.031). While this suggests that OPRM1 genotype is associated with morphine-related pruritus, the study did not report morphine dose requirements for the different genotypes, making it difficult to exclude confounding by drug dose.

Genetic Variants and Addiction Risk
A number of studies have reported on the association between various genes and risk of addiction to or abuse of opioid pain medications and nonprescription opioids and other nonprescription substances, with some overlap between the 2 categories. Studies with a focus on genes associated with risk of addiction to or abuse of prescription medications, rather than cocaine, nicotine, or other substances, are outlined next. These studies would translate to a clinical use of *drug selection or avoidance* (to identify individuals in whom opioids should be used with caution). Other studies have evaluated the role of genotype in the efficacy of methadone therapy for a variety of addictions; while there is likely overlap between the genes involved in methadone metabolism and response and those involved in the metabolism and response of other opioids, studies evaluating methadone as a treatment for addiction are not included here.

Genetic Variants and Addiction Risk: OPRM1 and Opioid Dependence
In 2013, Haerian et al published a meta-analysis of studies evaluating the association between the OPRM1 A118G (rs1799971) variant and opioid dependence. Reviewers included 18 studies overall. There were 13 studies including 9385 subjects (n=4601 with opioid dependence, n=4784 controls), which reported OPRM1 genotypes for cases and controls. In pooled analysis of all included studies, the presence of the A allele (vs the G allele) was not significantly associated with heroin dependence risk (pooled odds ratio [OR], 0.95; 95% CI, 0.77 to 1.17). In pooled analysis evaluating the risk of addiction to all opioids (excluding African-American subjects), the presence of the AA or AG genotype (vs the GG genotype) was significantly associated with opioid dependence (pooled OR=0.78; 95% CI, 0.63 to 0.97). Reviewers concluded that OPRM1 variants may be associated with opioid dependence among Asians.

In 2009, Coller et al published a meta-analysis of case-control studies evaluating the association between the OPRM1 A118G SNV allelic and genotypic frequencies and opioid dependence. Reviewers included 16 case-control studies (including 5169 subjects), which reported A118G genotype frequencies, included a group with opioid dependence and a control group, and had genotype samples that were in Hardy-Weinberg equilibrium. Similar to the Haerian meta-analysis, most studies (n=11) included evaluated the association between A118G genotype and heroin dependence, with 5 studies reporting on associations with opioids in general. In pooled analysis, no difference in A118G SNV genotype frequencies between opioid-
dependent and control groups was observed, with a pooled odds ratio of 1.28 (95% CI, 0.77 to 2.11; p=0.34). No difference in A118G SNV allelic frequencies between opioid-dependence and control groups was observed, with a pooled odds ratio of 1.16 (95% CI, 0.91 to 1.47; p=0.23).

Other earlier meta-analyses (2006, 2007) of the OPRM1 A118G SNV and substance dependence similarly reported no significant association between A118G SNVs and dependence.49,50

Genetic Variants and Addiction Risk: Dopamine Pharmacogenetics and Addiction

In 2015, Patriquin et al reported on results of a systematic review of studies evaluating the role of dopaminergic gene variation in the pharmacotherapy of alcohol, opioid, and cocaine use disorders.51 The systematic review included a qualitative analysis of 9 studies that evaluated various genes, including DRD2, ANKK1, DAT1, DBH, and DRD4. Four studies included addressed the treatment of opioid addiction (and/or cocaine addiction in 3 studies), and are most relevant to the scope of this evidence review. One study, evaluating 68 patients in a randomized controlled trial of disulfiram therapy for cocaine or opioid use, reported that the DRD2 GT/TT genotype was associated with decreases in positive urine samples for cocaine among disulfiram-treated patients (67%-48%), and carriers of at least 1 minor DRD2 or ANKK1 allele responded better to disulfiram. In a study of 321 patients treated with methadone for opioid dependence, DRD2, ANKK1, ABCB1, CYP2B6, and OPRM1 genotypes were together associated with methadone dose requirements. The 2 other studies reported associations between dopamine β-hydroxylase level and treatment effects.

Section Summary: Clinical Validity

The evidence on the clinical validity of pharmacogenetic testing for pain management is characterized by a large number of studies that have evaluated associations among many different genetic variants and drug responses, risk of adverse events, and addiction risk. For genes in currently available panel tests, the largest body of evidence is related to the association between the OPRM1 A118G SNV and analgesic response and addiction risk. Studies evaluating OPRM1’s role in analgesic response are generally relatively small cross-sectional studies conducted in the postoperative setting and have reported mixed findings, with some studies showing associations between OPRM1 genotype and analgesic dose and/or measures of pain intensity, and others showing no significant associations. Results of several meta-analyses have not consistently demonstrated an association between OPRM1 variants and addiction risk.

For other genes, the body of evidence evaluating associations between variant and analgesic response, adverse events, or addiction risk is small and inconclusive.

Clinical Utility

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Preferred evidence comes from RCTs.

Pharmacogenetic testing for pain management has a potential role for clinical utility in several settings, including drug selection or avoidance or in dose optimization. For drug selection, pharmacogenetic testing could be used to identify individuals not likely to respond to a particular drug, or to identify individuals at high risk of an adverse drug reaction. For dose optimization, pharmacogenetic testing could be used to identify individuals who are likely to be sensitive or resistant to a particular drug, or to estimate dose and dosing frequency.

Gammal et al (2016) reported on the feasibility of implementing a pre-emptive genetic test for CYP2D6 metabolizer status into their electronic clinical decision support system to guide prescribing of codeine with the goal of preventing its use after tonsillectomy or adenoidectomy and in CYP2D6 UM and PM (high-risk) genotypes. The authors did not report on any clinical outcomes, and did they report any outcomes pre or post implementation of the clinical decision support system for genetic testing for CYP2D6. Results were reported for a subset of 621 patients with sickle cell disease who had a CYP2D6 genotype result. Of these, 7.1% were UMs or possible UMs, and 1.4% were PMs. None of the patients with an UM or PM genotype were prescribed codeine. The authors acknowledged the need for future studies to demonstrate the impact of their genetic testing algorithm on clinical end points such as adverse effects and pain control.

Senagore et al (2017) reported on results of a prospective cohort study of 50 consecutive patients undergoing open or laparoscopic colorectal and major ventral hernia surgery. Prior to surgery, all patients underwent genetic testing using the NeuroIDgenetix pain panel that that analyzes 9 genes, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4/ CYP3A5, ABCB1, COMT, and OPRM1. Results of the panel were reported along with a list of medications classified as “Use as Directed” or “Use with Caution and/or Increased Monitoring.” Investigators used these results to guide selection of analgesics using a standard 1-to-10 VAS pain score in accordance with the results of genetic panel results. The primary outcome measure was Overall Benefit of Analgesia Score (OBAS), which assesses the combined impact on analgesia, patient satisfaction, and the impact of drug-associated side effects. The lower the score, the better is overall analgesia. The authors compared the findings with a historical cohort of 47 patients who underwent similar surgeries but were managed with standard enhanced recovery protocol. Results showed that OBASs were significantly lower in patients managed via genotype testing than those given no testing on postoperative day 1 (3.8 vs 5.4; 1.8 vs 2.3) and day 5 (3.0 vs 4.5; 1.2 vs 2.0), all respectively (all p<0.05). Need for narcotic-equivalent analgesics in the genotype tested group was lower in the group of genotype-tested patients (104.5 mg, SD=122.1) than in the historical controls (222.1 mg, SD=221.1;p<0.05). Although the authors reported that the 2 groups were similar in terms of patients characteristics, details of disease status and other known prognostic factors were lacking in the published paper. The authors did not report how the historical cohort was selected nor did they describe
efforts to control for known confounders using statistical adjustments. Furthermore, no attempt was made to assess the magnitude of any specific genetic variant combinations on drug efficacy or potency in our study population. This study was funded by the test manufacturer. Thus, multiple methodologic limitations do not permit conclusions from this study.

Chain of Evidence
It is not possible to construct an indirect chain of evidence for clinical utility due to the lack of clinical validity.

Section Summary: Clinical Utility
Because of the lack of established clinical validity, it is not possible to establish the clinical utility of genetic testing for pain management through a chain of evidence. Several studies have reported on a number of genes and responses to antiepileptic drugs or antiepileptic drug adverse events. How this information should be used to tailor medication management is not yet well-defined. Two studies were identified. The first reported on the use of preemptive genetic testing for CYP2D6 metabolizer status to guide prescribing codeine to pediatric patients but the study did not report on the impact of the genetic testing algorithm on clinical end points such as adverse effects and pain control. The second study reported on the impact of genetic panel testing to guide the selection of analgesics and reported significant improvement in total scores of a composite end point that measures analgesia, patient satisfaction, and the impact of drug-associated side effects compared to a historical control. However, methodologic limitations of that study preclude assessment of the effects on outcomes.

Summary of Evidence
For individuals who have need for pharmacologic pain management who receive pharmacogenetic testing to target therapy, the evidence includes genome-wide association studies, which correlate specific genetic variants with pain medication requirements or measures of pain control, case-control and cohort studies that report differences in pain medication requirements or measures of pain control for different genotypes, as well as systematic reviews and meta-analysis. Relevant outcomes are test accuracy and validity, other test performance measures, morbid events, health status measures, and medication use. The evidence on the clinical validity of pharmacogenetic testing for pain management is characterized by a large number of studies that have evaluated associations between many different genetic variants and response to analgesic medication, risk of adverse events, and addiction risk. The largest body of evidence assesses the association between the OPRM1 A118G single-nucleotide variant and analgesic response and addiction risk, which has not consistently demonstrated significant associations. For other genes included in commercially available pain management panel tests, the evidence evaluating associations between variant and analgesic response, adverse events, or addiction risk is small. At present, the clinical utility of pharmacogenetic testing in pain management is poorly defined. Two studies were identified that reported on ways clinical management of pain can be modified based on genetic testing. The first study reported the use of preemptive genetic test for CYP2D6 metabolizer status to guide prescribing of codeine in pediatric patients but did not report the
impact of the genetic testing algorithm on clinical end points such as adverse effects and pain control. The second study reported on the impact of a genetic panel test to guide selection of analgesics and reported significant improvement in total scores of a composite end point that measured analgesia, patient satisfaction, and the impact of drug-associated side effects compared to a historical control. However, methodologic limitations precluded assessment of the effects on outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information

Practice Guidelines and Position Statements

Clinical Pharmacogenetics Implementation Consortium
In 2012, the Clinical Pharmacogenetics Implementation Consortium issued guidelines for the management of codeine therapy in the context of CYP2D6 genotype, which were updated in 2014 to reflect U.S. Food and Drug Administration (FDA) labeling about codeine in children status post tonsillectomy with or without adenoidectomy and to include other opioids metabolized by CYP2D6.54,55 These guidelines did not specifically recommend CYP2D6 genotyping in particular patients, although they did provide the following codeine therapy recommendations based on CYP2D6 phenotype (see Table 8).

Table 8. CPIC Guideline for Codeine Therapy Based on CYP2D6 Phenotype (Adapted from Crews et al55)

<table>
<thead>
<tr>
<th>CYP2D6 Phenotype</th>
<th>Implications for Codeine Metabolism</th>
<th>Recommendations for Codeine Therapy</th>
<th>Classification of Recommendations for Codeine Therapy</th>
<th>Considerations for Alternative Opioids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrarapid metabolizer</td>
<td>Increased formation of morphine after codeine administration, leading to higher risk of toxicity</td>
<td>Avoid codeine use due to potential for toxicity</td>
<td>Strong</td>
<td>Alternatives not affected by this CYP2D6 phenotype include morphine and nonopioid analgesics. Tramadol and, to lesser extent, hydrocodone and oxycodone not good alternatives because their metabolism is affected by CYP2D6 activity</td>
</tr>
<tr>
<td>Extensive metabolizer</td>
<td>Normal morphine formation</td>
<td>Use label-recommended age- or weight-specific dosing</td>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>Intermediate metabolizer</td>
<td>Reduced morphine formation</td>
<td>Use label-recommended age or weight-specific dosing. If no response, consider alternative</td>
<td>Moderate</td>
<td>Monitor tramadol use for response</td>
</tr>
</tbody>
</table>
CYP2D6 Phenotype | Implications for Codeine Metabolism | Recommendations for Codeine Therapy | Classification of Recommendations for Codeine Therapy | Considerations for Alternative Opioids
---|---|---|---|---
Poor metabolizer | Avoid codeine use due to lack of efficacy | Strong | Alternatives not affected by this CYP2D6 phenotype include morphine and nonopioid analgesics. Tramadol and, to a lesser extent, hydrocodone and oxycodone not good alternatives because their metabolism is affected by CYP2D6 activity; these agents should be avoided.

American Academy of Neurology
In 2014, the American Academy of Neurology published a position paper on the use of opioids for chronic noncancer pain. Regarding pharmacogenetic testing, the guidelines stated that genotyping to determine whether response to opioid therapy can or should be more individualized is an emerging issue that will “require critical original research to determine effectiveness and appropriateness of use.”

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 9.

Table 9. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>NCT02487888</td>
<td>A Study of the Impact of genetic Testing on Clinical Decision Making and Patient Care</td>
<td>100,000</td>
</tr>
<tr>
<td>NCT02081872</td>
<td>Utility of PharmacoGenomics for Reducing Adverse Drug Effects</td>
<td>297,000</td>
<td>Jul 2017</td>
</tr>
<tr>
<td>NCT02037763</td>
<td>A Prospective Controlled Trial to Identify Biomarkers Involved in the Transition From Acute to Persistent Chronic Low Back Pain</td>
<td>5000</td>
<td>Aug 2018</td>
</tr>
</tbody>
</table>

CPIC: Clinical Pharmacogenetics Implementation Consortium.
<table>
<thead>
<tr>
<th>NCT ID</th>
<th>Title</th>
<th>Donor</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02256943</td>
<td>Genetic Determinants of Amitriptyline Efficiency for Pain Treatment</td>
<td>48</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>NCT02256956</td>
<td>Genetic Determinants of Amitriptyline Efficiency for Pain Treatment - Part II</td>
<td>48</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>NCT00836264</td>
<td>Pharmacogenomic Analysis of Morphine Pharmacokinetics and Response Variability Following Pediatric Tonsillectomy and Adenoidectomy: A Genome-Wide Association Approach</td>
<td>1650</td>
<td>Jun 2019 (suspended)</td>
</tr>
<tr>
<td>NCT02871934</td>
<td>Integrating Pharmacogenetics In Clinical Care</td>
<td>408</td>
<td>Dec 2020</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
Denotes industry-sponsored or cosponsored trial.

References

1. Institute of Medicine, Committee on Advancing Pain Research Care and Education. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. Washington (DC): National Academies Press; 2011.

47. Haerian BS, Haerian MS. OPRM1 rs1799971 polymorphism and opioid dependence: evidence from a meta-analysis. Pharmacogenomics. May 2013;14(7):813-824. PMID 23651028

MTHFR (5,10-methylenetetrahydrofolate reductase) (eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)

Molecular pathology procedure, Level 2 (eg, 2-10 SNPs, 1 methylated variant, or 1 somatic variant [typically using nonsequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat)

COMT (catechol-O-methyltransferase) (drug metabolism) gene analysis, c.472G>A (rs4680) variant. Catechol-O-Methyltransferase (COMT) Genotype

Pharmacogenetic Testing for Pain Management 2.04.131

ICD-10 Codes

G89.0- G89.4 Pain, not elsewhere classified code range

R52 Pain, unspecified

The following tests have been codified in CPT:

There is specific CPT coding for this testing:

MTHFR (5, 10-methylenetetrahydrofolate reductase) (eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)

Code 81401 includes CYP3A4 testing:

Molecular pathology procedure, Level 2 (eg, 2-10 SNPs, 1 methylated variant, or 1 somatic variant [typically using nonsequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat) includes – CYP3A4 (cytochrome P450, family 3, subfamily A, polypeptide 4) (eg, drug metabolism), common variants (eg, *2, *3, *4, *5, *6)
There is no specific CPT code for pain management testing panels. If there are CPT
codes for the component tests in the panel and there is no algorithmic analysis
used, the individual CPT codes may be reported. The unlisted molecular pathology
code 81479 would be reported once for the balance of the panel.

Additional Policy Key Words
N/A

Policy Implementation/Update Information
8/1/15 New Policy. Considered Investigational.
8/1/16 No policy statement changes.
8/1/17 No policy statement changes.

State and Federal mandates and health plan contract language, including specific
provisions/exclusions, take precedence over Medical Policy and must be considered first in
determining eligibility for coverage. The medical policies contained herein are for informational
purposes. The medical policies do not constitute medical advice or medical care. Treating health
care providers are independent contractors and are neither employees nor agents Blue KC and are
solely responsible for diagnosis, treatment and medical advice. No part of this publication may be
reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic,
photocopying, or otherwise, without permission from Blue KC.