Testing for Targeted Therapy of Non-Small-Cell Lung Cancer

Policy Number: AHS - M2030 - Testing for Targeted Therapy of Non-Small-Cell Lung Cancer

Initial Presentation Date: 1/01/2020
Revision Date: 1/01/2020

Policy Description

Non-small cell lung cancer (NSCLC) is a heterogeneous group of cancers encompassing any type of epithelial lung cancer other than small cell lung cancer (SCLC) which arise from the epithelial cells of the lung and include squamous cell carcinoma, large cell carcinoma, adenocarcinoma (Thomas, 2018). Recently oncogenesis in NSCLC has been associated with mutations in the epidermal growth factor receptor (EGFR) or rearrangements of the anaplastic lymphoma kinase (ALK) gene or ROS1 gene (Sequist & Neal, 2019).

For guidance concerning the use of circulating tumor cells (i.e. liquid biopsy) in NSCLC, please refer to policy G2054 Detection Of Circulating Tumor Cells and Cell-Free DNA in Cancer Management.

Related Policies

<table>
<thead>
<tr>
<th>Policy Number</th>
<th>Policy Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHS-G2054</td>
<td>Detection of Circulating Tumor Cells and Cell-Free DNA in Cancer Management</td>
</tr>
<tr>
<td>AHS-M2066</td>
<td>Genetic Cancer Susceptibility Using Next Generation Sequencing</td>
</tr>
<tr>
<td>AHS-M2109</td>
<td>Molecular Panel Testing of Cancers To Identify Targeted Therapy</td>
</tr>
<tr>
<td>AHS-M2145</td>
<td>General Genetic Testing, Germline Disorders</td>
</tr>
<tr>
<td>AHS-M2146</td>
<td>General Genetic Testing, Somatic Disorders</td>
</tr>
</tbody>
</table>

Indications and/or Limitations of Coverage

Application of coverage criteria is dependent upon an individual’s benefit coverage at the time of the request

1. Testing for \textit{EGFR} and \textit{BRAF} mutations, \textit{ALK} and \textit{ROS1} rearrangements \textbf{MEETS COVERAGE CRITERIA} before any systemic therapy initiation in patients with lung cancer

2. Multiplexed genetic sequencing panels testing including \textit{BRAF}, \textit{MET}, \textit{RET}, \textit{ERBB2(HER2)}, \textit{KRAS} \textbf{MEETS COVERAGE CRITERIA} to identify other treatment options beyond \textit{EGFR}, \textit{ALK}, and \textit{ROS1} in patients with lung cancer
3. Analysis of PD-L1 expression by immunohistochemistry in Non-Small Cell Lung Cancer tumors MEETS COVERAGE CRITERIA before first-line therapy with pembrolizumab in patients with metastatic disease meeting one of the following:
 a. Individuals with adenocarcinoma, large cell, or not otherwise specified NSCLC or
 b. Individuals with squamous cell carcinoma who have never smoked or
 c. Individuals with mixed histology or
 d. When the biopsy specimen is small.

4. Testing for NTRK gene fusion MEETS COVERAGE CRITERIA for individuals with metastatic or advanced NSCLC before first-line or subsequent therapy with larotrectinib.

5. Tumor mutational burden (TMB) testing MEETS COVERAGE CRITERIA for individuals with metastatic or advanced NSCLC before initiating nivolumab therapy.

6. Microsatellite instability analysis MEETS COVERAGE CRITERIA for individuals with unresectable or metastatic Non-Small Cell Lung Cancer that has progressed after prior treatment and for which there is no alternative treatment AND for whom pembrolizumab is being considered for therapy.

7. KRAS molecular testing DOES NOT MEET COVERAGE CRITERIA as a routine stand-alone assay and as a sole determinant of targeted therapy.

8. Analysis of PD-L1 expression by immunohistochemistry in all other situations is considered EXPERIMENTAL AND INVESTIGATIONAL.

9. Analysis for genetic alterations in the genes not mentioned above for targeted therapy in patients with NSCLC is considered EXPERIMENTAL AND INVESTIGATIONAL.

 NOTE: For 5 or more gene tests being run on a tumor specimen (i.e. non-liquid biopsy) on the same platform, such as multi-gene panel next generation sequencing, please refer to AHS-R2162 Reimbursement Policy.

Scientific Background

Primary lung cancer remains one of the most common malignancies; in the United States, approximately 230,000 individuals are diagnosed and more than 140,000 deaths occur annually. Approximately 95% of lung cancers are either non-small cell or small cell, and 80%-85% are non-small cell lung cancers (NSCLC) (ACS, 2016; Midthun, 2018).

Specific molecular treatments for patients based on certain genetic mutations have been developed. Currently, EGFR, ALK, ROS1, BRAF, and NTRK-positive cases of NSCLC have FDA-approved targeted therapies (i.e. specific treatments for specific mutations), whereas HER2-, MET-, and RET-positive cases are treated with off-label therapies. Therapies for other mutations such as RAS, PTEN, AKT1, and PIK3CA mutations are currently in development. Still other genetic biomarkers, such as PD-L1 expression and microsatellite instability (MSI) testing may contribute to the management of NSCLC cases (Sequist & Neal, 2017, 2019).

EGFR tyrosine kinase mutations are observed in approximately 15% of NSCLC adenocarcinoma cases in the United States and occur more frequently in nonsmokers. The presence of an EGFR mutation usually confers a better prognosis and may be treated by EGFR tyrosine kinase inhibitors (TKIs) such as erlotinib (Sequist & Neal, 2019).

ALK tyrosine kinase translocations are present in approximately 4% of NSCLC adenocarcinoma cases in the United States and occur more frequently in nonsmokers and younger patients. In advanced-stage NSCLC, the presence of an ALK translocation may be treated by ALK TKIs such
ROS1 is a receptor tyrosine kinase that acts as a driver oncogene in 1 to 2% of NSCLC cases by a translocation between ROS1 and other genes such as CD74. ROS1 translocations are usually associated with younger patients and individuals who have never smoked tobacco. Since the ALK and ROS tyrosine kinases are significantly homologous, the ROS1 tyrosine kinase is treatable by ALK TKIs such as crizotinib (Sequist & Neal, 2019).

HER2 (ERBB2) is an EGFR family receptor tyrosine kinase. Mutations in HER2 have been detected in approximately 1 to 3% of NSCLC tumors. These mutations are most frequent in exon 20, resulting primarily in adenocarcinomas. This mutation is more prevalent among individuals who have never smoked tobacco and women (Sequist & Neal, 2019; Zinner et al., 2004).

BRAF is a downstream signaling mediator of KRAS that activates the mitogen-activated protein kinase (MAPK) pathway. Activating BRAF mutations have been observed in 1 to 3% of NSCLC cases and are usually associated with smokers. BRAF inhibition with oral small-molecule TKIs has been used to treat this version of NSCLC (Sequist & Neal, 2019).

MET is a tyrosine kinase receptor for hepatocyte growth factor (HGF). MET mutations include MET exon 14 skipping, MET gene amplification, and MET and EGFR co-mutations. Crizotinib, an ALK/ROS inhibitor, has been used to treat MET-positive cases of NSCLC, but MET-specific therapies are under investigation (Sequist & Neal, 2019).

The RET gene encodes a cell surface tyrosine kinase receptor that may be translocated in adenocarcinomas. These mutations occur more frequently in younger patients and in individuals who have never smoked tobacco. Off-label RET inhibitors, such as alectinib, have been used to treat RET-positive cases of NSCLC (Sequist & Neal, 2019).

RAS mutations, in either KRAS or NRAS are associated with NSCLC. Activating KRAS mutations are observed in approximately 20 to 25% of lung adenocarcinomas in the United States and are generally associated with smoking. The presence of a KRAS mutation has a limited effect on overall survival in patients with early-stage NSCLC. NRAS is homologous to KRAS and associated with smoking as well; however, NRAS mutations comprise only 1% of NSCLC cases. The clinical significance of NRAS mutations is unclear, and no effective targeted therapies exist at this time (Sequist & Neal, 2019).

PIK3CA, AKT1, and PTEN are three genes involved in the same pathway. PIK3CA encodes the catalytic subunit of phosphatidyl 3-kinase (PI3K), AKT1 acts immediately downstream of PI3K, and phosphatase and tensin homolog (PTEN) inhibits AKT by dephosphorylation. Oncogenic alterations in this pathway include gain-of-function mutations in PIK3CA and AKT1, and loss of PTEN function. PIK3CA mutations may also cause resistance to EGFR TKIs in EGFR-mutated NSCLC. Small-molecule inhibitors of PI3K and AKT are being developed, but clinical efficacy of these agents against specific molecular alterations is unknown (Sequist & Neal, 2019).

Other genetic biomarkers include PD-L1 assessment and microsatellite instability testing. Programmed death-1 ligand (PD-L1) expression testing via immunohistochemistry (IHC) is used to guide therapy for patients with NSCLC. Tumor cells present PD-L1 to T-cells to inhibit the immune response by downregulating cytokine production and T-cell proliferation, thereby allowing these tumor cells to evade immune system activity. However, monoclonal antibody therapy (immune therapy) has been developed to inhibit this pathway and overcome this
mechanism of immune system evasion (Teixidó, Vilariño, Reyes, & Reguart, 2018). Microsatellites are short tandem repeat sequences located throughout the genome. However, these sequences are subject to instability caused by faulty mismatch repair genes. This has historically been reported in other cancers, such as Lynch syndrome, and has been reported in NSCLC. Microsatellite instability (MSI) testing may be used to evaluate NSCLC cases (Fong, Zimmerman, & Smith, 1995).

Precision oncology is now the evidence-based standard of care for the management of many advanced NSCLCs. Expert consensus guidelines have defined minimum requirements for routine testing and identification of EGFR and ALK mutations in advanced lung adenocarcinomas. Targeted use of TKIs based on certain genetic mutations has consistently led to more favorable outcomes compared with traditional cytotoxic agents (Shea, Costa, & Rangachari, 2016). The concept of targeted testing has been approved by the FDA, as package inserts for drugs such as erlotinib specify use for EGFR mutations and other drugs such as pembrolizumab have gained approval for specific types of tumors (in this case, high-MSI tumors) (Boyiadzis et al., 2018; FDA, 2004; Lemery, Keegan, & Pazdur, 2017).

Validity and Utility

Lin et al evaluated the association between EGFR and EGFR-TKI efficacy in stage IV NSCLC patients. 94 patients were assessed. The authors calculated a 74.5% objective response rate and a 97.9% disease control rate for EGFR-TKI treatment. The authors concluded that EGFR-TKI therapy resulted in survival benefits for EGFR-mutant patients regardless of “gender, smoking history, pathologic type, type of EGFR mutations, brain metastasis and timing of targeted therapy” (Lin et al., 2017).

Li et al examined the effect of number of EGFR mutations on the efficacy of EGFR TKIs. 201 patients with EGFR mutations were evaluated, and these patients were quantitatively separated into “low” and “high” groups based on “amplification refractory mutation system (ARMS) method optimized with competitive blockers and specific mutation quantitation (ARMS+)”. The cutoff value was determined by a receiving operating characteristic analysis in a training group and further validated in another group. The investigators found the median progression-free survival (PFS) to be 15 months in the high group compared to the 2 months in the low group, and similar results were found in the validation group. The authors concluded that the abundance of EGFR mutations was significantly associated with objective response to EGFR TKIs. However, they also noted the abundance of EGFR T790M mutation may adversely affect PFS rather than objective response rate (Li et al., 2017).

Wang et al investigated the effect of ALK rearrangements on NSCLC patients. 15 studies including 4981 patients were reviewed. The study found that ALK positive (ALK+) patients faced better prognoses (hazard ratio 0.81 of ALK negative patients) except in the non-smoking population (hazard ratio 1.65). ALK+ patients also experienced a significantly higher objective response rate in pemetrexed-based chemotherapy, but not with EGFR-TKI treatment (Wang et al., 2017).

Gainor et performed a study evaluating the efficacy of PD-L1 blockades on EGFR and ALK positive patients. 58 patients were evaluated, and 28 had an EGFR or ALK mutation whereas 30 were wild-type. The investigators found only one of the 28 patients (3.6%) with either mutation had an objective response whereas seven of the 30 (23.3%) wild-type patients had an objective response (Gainor et al., 2016).

Planchard et al evaluated the efficacy of the FDA-approved combination of daBRAFenib plus trametinib on previously-treated BRAF-mutant metastatic NSCLC. 57 patients were enrolled, and 36 of these patients achieved an overall response. However, serious adverse events were reported in 32 of these patients. The authors concluded that this combination may represent a robust therapy with a management safety profile in BRAF-positive NSCLC patients (Planchard et al., 2016).

A 2019 comprehensive study by Singal and associates examined the electronic health records (EHR) of 4064 individuals with NSCLC from 275 different oncology practices to explore “associations between tumor genomics and patient characteristics with clinical outcomes...”
They note that 21.4% of these individuals had a mutation in **EGFR**, **ALK**, or **ROS1**, and that patients with driver mutations who had targeted therapies had significantly improved overall survival times than individuals who did not have targeted therapies (median of 18.6 versus 11.4 months, respectively); moreover, a tumor mutational burden (TMB) of 20 or higher was associated with improved overall survival for patients on PD-L1-targeted therapy than those patients with a TMB less than 20. The authors concluded that they replicated similar associations from previous research “between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy (Singal et al., 2019).”

Guidelines and Recommendations

National Comprehensive Cancer Network (NCCN, 2019)

In the version 4.2019 update of the NCCN guidelines for NSCLC released on 04/29/2019, they state, “Numerous gene alterations have been identified that impact therapy selection. Testing of lung cancer specimens for these alterations is important for identification of potentially efficacious targeted therapies, as well as avoidance of therapies unlikely to provide clinical benefit (NCCN, 2019).” The NCCN states, “Appropriate possible testing methodologies are indicated below for each analyte separately; however, several methodologies are generally considerations for use:

- Next-generation sequencing (NGS) is used in clinical laboratories. Not all types of alterations are detected by individual NGS assays and it is important to be familiar with the types of alterations identifiable in individual assays or combination(s) of assays.

- Real-time polymerase chain reaction (PCR) can be used in a highly targeted fashion (specific mutations targeted)...

- Sanger sequencing requires the greatest degree of tumor enrichment. Unmodified Sanger sequencing is not appropriate for detection of mutations in tumor samples with less than 25% to 30% tumor after enrichment and is not appropriate for assays in which identification of subclonal events (eg, resistance mutations) is important. If Sanger sequencing is utilized, tumor enrichment methodologies are nearly always recommended.

- Other methodologies may be utilized, including multiplex approaches not listed above (ie, SNaPshot, MassARRAY).

- Fluorescence in situ hybridization (FISH) analysis is utilized for many assays examining copy number, amplification, and structural alterations such as gene rearrangements.

- Immunohistochemistry (IHC) is specifically utilized for some specific analytes, and can be a useful surrogate or screening assay for others (NCCN, 2019).”

The NCCN states, “To minimize tissue use and potential wastage, the NCCN Panel recommends that biomarker testing be done as part of broad molecular profiling using a validated test(s) that assesses a minimum of the following potential alterations: **EGFR** mutations, **BRAF** mutations, **ALK** rearrangements, and **ROS1** rearrangements… Broad molecular profiling is also recommended to identify rare driver mutations for which effective therapy may be available, such as neurotrophic receptor tyrosine kinase (**NTRK**) gene fusions, **RET** rearrangements, **ERBB2 (HER2)** mutations, and TMB (NCCN, 2019).”

EGFR mutations

EGFR mutations are most often assessed using rt-PCR, Sanger sequencing, and NGS. **EGFR** mutation status is important for determining use of tyrosine kinase inhibitor (TKI) therapies. **EGFR** mutations include, but are not limited to, exon 19 deletions, p.L858R point mutation,
p.L861Q, p.G719X, p.S768I0, exon 20 insertion variants, and p.T790M. As a category 1 recommendation, EGFR mutation testing is recommended for advanced or metastatic disease, including adenocarcinoma, large cell, and NSCLC NOS. As a category 2A recommendation, it is recommended to consider it for individuals with squamous cell carcinoma who have never been smokers, small biopsy specimens, or mixed histology.

ALK gene rearrangements

ALK gene rearrangements are most often assessed using FISH, but IHC can also be effective. The NCCN states that NGS can detect ALK fusions, but PCR is less likely to detect any ALF fusion with a novel partner(s). The most common fusion partner for ALK is EML4; however, many other partners have been isolated and identified. Similar to EGFR, ALK status is used in determining whether or not TKI therapies are appropriate. As a category 1 recommendation, ALK testing is recommended for advanced or metastatic disease, including adenocarcinoma, large cell, and NSCLC NOS. As a category 2A recommendation, it is recommended to consider it for individuals with squamous cell carcinoma who have never been smokers, small biopsy specimens, or mixed histology.

ROS1 rearrangements

In NSCLC, ROS1 rearrangements can result in inappropriate ROS1 kinase signaling. Similar to ALK, FISH break-apart testing is often used, but this methodology “may under-detect the FIG-ROS1 variant” (NCCN, 2019). IHC requires confirmatory testing because it has a low specificity for ROS1. PCR, if used, can be unlikely to detect novel fusion partners. ROS1 status is important for responsiveness to oral ROS1 TKIs. As category 2A recommendations, ROS1 testing should be performed for advanced or metastatic disease, including adenocarcinoma, large cell, and NSCLC NOS; it should be considered in individuals with squamous cell carcinoma with small biopsy specimens or mixed histology.

BRAF point mutations

Sequencing methods, especially NGS and Sanger, and rtpCR are most often used for detecting BRAF point mutations. BRAF V600 mutations are associated with responsiveness to certain combination therapies. Many BRAF mutations have been identified in NSCLC, but the impact of these mutations is not well-understood as of date. As category 2A recommendations, BRAF testing should be performed for advanced or metastatic disease, including adenocarcinoma, large cell, and NSCLC NOS; it should be considered in individuals with squamous cell carcinoma with small biopsy specimens or mixed histology.

KRAS point mutations

Like BRAF, sequencing methods are used in the identification of point mutations within the KRAS gene. For NSCLC, the most common KRAS mutations are located in codon 12 even though other point mutations may occur elsewhere. KRAS mutations have been linked as a prognostic indicator of poor survival and can impact EGFR TKI therapy. The NCCN states, “EGFR, KRAS, ROS1, and ALK genetic alterations do not usually overlap; thus, testing for KRAS mutations may identify patients who will not benefit from further molecular testing (NCCN, 2019).” As of publication date, no KRAS-specific therapies are recommended.

PD-L1

PD-L1 is expressed on tumor cells; its presence is used to determine possible pembrolizumab therapy. The FDA has approved IHC use for assessing PD-L1. For individuals with a cutoff of 50% tumor proportion PD-L1 score, pembrolizumab is recommended as a first-line therapy whereas a cutoff of only 1% indicates that pembrolizumab can be used as a second-line therapy. The NCCN does note that “the potential for multiple different assays for PD-L1 has raised concern among both pathologists and oncologists (NCCN, 2019).” As a category 1 recommendation, PD-L1 testing is recommend for all cases of advanced or metastatic disease,
including adenocarcinoma, large cell, NSCLC NOS, and squamous cell carcinoma.

Plasma cell-free/circulating tumor DNA (cfDNA)

The NCCN clearly states that cfDNA should not be used in lieu of a tissue diagnosis since the current technologies can have high false-negative rates (up to 30%) even though the specificity is high. “Standards for analytics performance characteristics of cell-free tumor DNA have not been established, and in contrast to tissue-based testing, no guidelines exist regarding the recommended performance characteristics of this type of testing. Cell-free tumor DNA testing can identify alterations that are unrelated to a lesion of interest, for example, clonal hematopoiesis of indeterminate potential (CHIP).” The NCCN does state that cfDNA testing can be considered in two instances: “if a patient is medically unfit for invasive tissue sampling” or “in the initial diagnostic setting, if following pathologic confirmation of a NSCLC diagnosis there is insufficient material for molecular analysis...” In the latter situation, they state that cfDNA testing “should be used only if follow-up tissue-based analysis is planned for all patients in which an oncogenic driver is not identified (NCCN, 2019).”

NTRK gene fusion

The NCCN now has an NTRK gene fusion positive algorithm where larotrectinib is to be used as a first-line therapy if the gene fusion was discovered prior to first-line systemic therapy. If the NTRK gene fusion was discovered during a different first-line systemic therapy, then they recommend completing the planned systemic therapy, including maintenance therapy, and then follow this first-line therapy up with larotrectinib. As a category 2A recommendation, the NCCN recommends NTRK gene fusion testing to be included as part of molecular profiling for all forms of advanced or metastatic disease, including adenocarcinoma, large cell, NSCLC NOS, and squamous cell carcinoma.

Tumor Mutational Burden (TMB)

“The NCCN Panel now recommends (category 2A) nivolumab with or without ipilimumab for patients with high TMB levels...” In 2019, the NCCN added tumor mutational burden (TMB) to the list of biomarkers to identify novel therapies and in the section concerning predictive biomarkers. The NCCN notes that even though TMB may be helpful in selecting immunotherapy, especially nivolumab, currently, “there is no consensus on how to measure TMB.” The NCCN goes on to state, “Targeted agents are available for patients with NSCLC who have these other genetic alterations, although they are FDA approved for other indications... Thus, the NCCN Panel strongly advises broader molecular profiling to identify rare driver mutations to ensure that patients receive the most appropriate treatment; patients may be eligible for clinical trials for some of these targeted agents (NCCN, 2019).”

Emerging biomarkers to identify novel therapies

The NCCN version 4.2019 also lists the following emerging biomarkers to identify novel therapies for patients with metastatic NSCLC.

<table>
<thead>
<tr>
<th>Genetic Alteration</th>
<th>Available Targeted Agents for Genetic Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level MET amplification or MET exon 14 skipping mutation</td>
<td>Crizotinib</td>
</tr>
<tr>
<td>RET rearrangements</td>
<td>Cabozantinib, Vandetanib</td>
</tr>
<tr>
<td>ERBB2 (HER2) mutations</td>
<td>Ado-trastuzumab emtansine</td>
</tr>
<tr>
<td>Tumor mutational burden (TMB)</td>
<td>Nivolumab + ipilimumab, Nivolumab</td>
</tr>
</tbody>
</table>
The CAP/IASLC/AMP joint guidelines indicate that "EGFR molecular testing should be used to select patients for EGFR-targeted tyrosine kinase inhibitor therapy (Evidence Grade: A)" (Lindeman et al., 2013). Testing is recommended for adenocarcinomas and mixed lung cancers "regardless of histologic grade." However, in the setting of fully excised lung cancer specimens, EGFR testing is not recommended for lung cancer without any adenocarcinoma component (Evidence Grade: A). In the setting of more limited lung cancer specimens where an adenocarcinoma component cannot be completely excluded, EGFR testing is recommended "in cases showing squamous or small cell histology but clinical criteria (eg, young age, lack of smoking history) may be useful in selecting a subset of these samples for testing" (Evidence Grade: A). The 2018 CAP guidelines (Lindeman et al., 2018) reaffirmed the 2013 guideline recommendations of universal testing of lung cancer patients with advanced-stage cancers with an adenocarcinoma component, using molecular diagnosis for activating “hot-spot” mutations in EGFR exons 18 to 21 with at least 1% prevalence (ie, codons 709 and 719, exon 19 deletion 768, and exon 20 insertions 790, 858, and 861).

CAP also added the recommendation that: “In lung adenocarcinoma patients who harbor sensitizing EGFR mutations and have progressed after treatment with an EGFR-targeted tyrosine kinase inhibitor, physicians must use EGFR T790M mutational testing when selecting patients for third-generation EGFR-targeted therapy. Laboratories testing for EGFR T790M mutation in patients with secondary clinical resistance to EGFR targeted kinase inhibitors should deploy assays capable of detecting EGFR T790M mutations in as little as 5% of viable cells. (Lindeman et al., 2018)

The CAP recommendations were updated to include "3 categories into which genes should be placed. One set of genes must be offered by all laboratories that test lung cancers, as an absolute minimum: EGFR, ALK, and ROS1. A second group of genes should be included in any expanded panel that is offered for lung cancer patients: BRAF, MET, RET, ERBB2 (HER2), and KRAS, if adequate material is available. All other genes are considered investigational at the time of publication.” They elaborate to recommend: “In this context, institutions providing care for lung cancer patients have a choice: (1) offer a comprehensive cancer panel that includes all of the genes in the first 2 categories (EGFR, ALK, ROS1, BRAF, MET, RET, ERBB2 [HER2], KRAS, RET) for all appropriate patients, or (2) offer targeted testing for the genes in the must-test category (EGFR, ALK, ROS1) for all appropriate patients and offer as a second test an expanded panel containing the second-category genes (BRAF, MET, ERBB2 [HER2], and RET) for patients who are suitable candidates for clinical trials, possibly after performing a single-gene KRAS test to exclude patients with KRAS-mutant cancers from expanded panel testing (Lindeman et al., 2018). However, the CAP states that "KRAS molecular testing is not indicated as a routine stand-alone assay as a sole determinant of targeted therapy. It is appropriate to include KRAS as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative” and that “RET, MET, KRAS, and ERBB (HER2) molecular testing is not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include RET, MET, KRAS, and ERBB (HER2) as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative”.

The guidelines indicate that “ALK molecular testing should be used to select patients for ALK-targeted TKI therapy (Evidence Grade: B)” (Lindeman et al., 2013). Testing is recommended for adenocarcinomas and mixed lung cancers “regardless of histologic grade.” However, in the setting of fully excised lung cancer specimens, ALK testing is not recommended for lung cancer without any adenocarcinoma component (Evidence Grade: A). In the setting of more limited
lung cancer specimens where an adenocarcinoma component cannot be completely excluded, **ALK** testing is recommended “in cases showing squamous or small cell histology but clinical criteria (eg, young age, lack of smoking history) may be useful in selecting a subset of these samples for testing” (Evidence Grade: A).

The CAP recommends that “Multiplexed genetic sequencing panels are preferred over multiple single-gene tests to identify other treatment options beyond **EGFR**, **ALK**, and **ROS1**.” They found that “NGS enables the simultaneous assessment of all 3 of the “must-test” genes in lung cancer—**EGFR**, **ALK**, **ROS1**—as well as each of the genes suggested for inclusion in larger panels—**BRAF**, **RET**, **ERBB2** (HER2), **KRAS**, **MET**—and hundreds to thousands of other genes that may have potential roles in cancer development. In addition to small mutations, NGS assays are able to detect fusions/rearrangements and copy number changes in the targeted genes, if designed with these alterations in mind. Numerous studies have demonstrated the excellent sensitivity of NGS methods relative to single-gene targeted assays, particularly for single-nucleotide–substitution mutations. Next-generation sequencing methods typically require less input DNA and can accommodate smaller samples with lower concentrations of malignant cells, and, although typically slower than 1 single-gene assay, can often be performed more rapidly than sequential multiple single-gene assays. A reduced need for repeat biopsy is an additional benefit of panel testing (Lindeman et al., 2018).”

The 2018 CAP recommendations (Lindeman et al., 2018) state: “**BRAF** molecular testing is currently not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include **BRAF** as part of larger testing panels performed either initially or when routine **EGFR**, **ALK**, and **ROS1** testing are negative.”

The 2018 CAP (Lindeman et al., 2018) recommendations state: “**ROS1** testing must be performed on all lung adenocarcinoma patients, irrespective of clinical characteristics. **ROS1** IHC may be used as a screening test in lung adenocarcinoma patients; however, positive **ROS1** IHC results should be confirmed by a molecular or cytogenetic method.

In 2018 CAP (Lindeman et al., 2018) added the recommendation that “IHC is an equivalent alternative to FISH for **ALK** testing”, and that “although at the time of writing RT-PCR and NGS are not approved by the FDA in the United States as first-line methods for determining **ALK** status in selection of patients for **ALK** inhibitor therapy, these approaches have shown comparable performance with IHC when designed to detect the majority of fusions, and are standard practice in many other countries. These methods are highly specific for most fusions, and patients with positive results should be treated with an **ALK** inhibitor, although patients with negative results may benefit from a more sensitive method to exclude the possibility of a variant fusion. Similarly, amplicon-based NGS assays of DNA may likewise fail to detect all fusion variants, and therefore a capture-based DNA or RNA approach is preferred for NGS testing for **ALK** fusions. Current data are still too limited to develop a specific recommendation either for or against the use of NGS for **ALK** fusions as a sole determinant of **ALK** TKI therapy”.

Lastly the CAP found that “There is currently insufficient evidence to support a recommendation for or against routine testing for **ALK** mutational status for lung adenocarcinoma patients with sensitizing **ALK** mutations who have progressed after treatment with an **ALK**-targeted tyrosine kinase inhibitor (Lindeman et al., 2018)”.

American Society of Clinical Oncology (ASCO, 2017)

In 2017, ASCO published a clinical practice guideline update on systemic therapy for Stage IV NSCLC (Hanna et al., 2017). ASCO recommended that “Regarding first-line treatment for patients with non–squamous cell carcinoma or squamous cell carcinoma (without positive markers, eg, **EGFR/ALK/ROS1**), if the patient has high programmed death ligand 1 (PD-L1) expression, pembrolizumab should be used alone; if the patient has low PD-L1 expression,
clinicians should offer standard chemotherapy. Regarding second-line treatment in patients who received first-line chemotherapy, without prior immune checkpoint therapy, if NSCLC tumor is positive for PD-L1 expression, clinicians should use single-agent nivolumab, pembrolizumab, or atezolizumab; if tumor has negative or unknown PD-L1 expression, clinicians should use nivolumab or atezolizumab (Hanna et al., 2017)."

ASCO recommends testing for *EGFR* mutations in tumors of NSCLC patients who “are being considered for first-line therapy with an *EGFR* TKI” to determine whether an *EGFR* TKI or chemotherapy is the appropriate first-line therapy (Keedy et al, 2011). In 2014, ASCO endorsed the CAP/IASLC/AMP guidelines and highlighted three evolving areas: advances in *ALK* testing methodology, considerations for selecting appropriate populations for molecular testing, and emergence of other targetable molecular alterations (Leighl et al, 2014).

European Society for Medical Oncology (ESMO, 2016),

According to ESMO, genetic alterations, which are key oncogenic events (driver mutations), have been identified in NSCLC, with two of these—*EGFR* mutations and the anaplastic lymphoma kinase (*ALK*) rearrangements—determining approved, selective pathway-directed systemic therapy. The ESMO guidelines do not specifically mention *KRAS* mutation testing. NGS is also mentioned for *ALK*, *RET*, *ROS1*, *MET*, *HER2*, and *BRAF* mutations (Novello et al., 2016).

State and Federal Regulations, as applicable

The FDA has approved 12 tests for assessment of markers relevant to targeted therapy of NSCLC. Additionally, many labs have developed specific tests that they must validate and perform in house. These laboratory-developed tests (LDTs) are regulated by the Centers for Medicare and Medicaid (CMS) as high-complexity tests under the Clinical Laboratory Improvement Amendments of 1988 (CLIA ’88). As an LDT, the U. S. Food and Drug Administration has not approved or cleared this test; however, FDA clearance or approval is not currently required for clinical use.

Applicable CPT/HCPCS Procedure Codes

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81210</td>
<td>BRAF (B-Raf proto-oncogene, serine/threonine kinase) (eg, colon cancer, melanoma), gene analysis, V600 variant(s)</td>
</tr>
<tr>
<td>81235</td>
<td>EGFR (epidermal growth factor receptor) gene analysis, common variants (e.g., exon 19 LREA deletion, L858R, T790M, G719A, G719S, L861Q)</td>
</tr>
<tr>
<td>81275</td>
<td>KRAS (eg carcinoma) gene analysis, variants in codons 12 and 13</td>
</tr>
<tr>
<td>81276</td>
<td>KRAS (Kirsten rat sarcoma viral oncogene homolog) (eg, carcinoma) gene analysis; additional variant(s) (eg, codon 61, codon 146)</td>
</tr>
<tr>
<td>81301</td>
<td>Microsatellite instability analysis (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) of markers for mismatch repair deficiency (eg, BAT25, BAT26), includes comparison of neoplastic and normal tissue, if performed</td>
</tr>
<tr>
<td>81401</td>
<td>Molecular pathology proc, level 2</td>
</tr>
<tr>
<td>81404</td>
<td>Molecular pathology proc, level 5</td>
</tr>
<tr>
<td>Procedure Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>81538</td>
<td>Oncology (lung), mass spectrometric 8-protein signature, including amyloid A, utilizing serum, prognostic and predictive algorithm reported as good versus poor overall survival</td>
</tr>
<tr>
<td>88271</td>
<td>Molecular cytogenetics; DNA probe, each (eg, FISH)</td>
</tr>
<tr>
<td>88272</td>
<td>Molecular cytogenetics; chromosomal in situ hybridization, analyze 3-5 cells (eg, for derivatives and markers)</td>
</tr>
<tr>
<td>88273</td>
<td>Molecular cytogenetics; chromosomal in situ hybridization, analyze 10-30 cells (eg, for microdeletions)</td>
</tr>
<tr>
<td>88342</td>
<td>Immunohistochemistry or immunocytochemistry, per specimen; each multiplex antibody stain procedure</td>
</tr>
<tr>
<td>88360</td>
<td>Morphometric analysis, tumor immunohistochemistry (eg, Her-2/neu, estrogen receptor/progesterone receptor), quantitative or semiquantitative, per specimen, each single antibody stain procedure; manual</td>
</tr>
<tr>
<td>88361</td>
<td>Morphometric analysis, tumor immunohistochemistry (eg, Her-2/neu, estrogen receptor/progesterone receptor), quantitative or semiquantitative, per specimen, each single antibody stain procedure; using computer-assisted technology</td>
</tr>
</tbody>
</table>

Evidence-based Scientific References

doi:10.1200/JCO.2017.74.6065

Procedure codes appearing in Medical Policy documents are included only as a general reference tool for each policy. They may not be all-inclusive.

Policy Implementation/Update Information

1/1/20 New Policy

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.