Cardiovascular Risk Panels

Policy Number: 2.04.100 Last Review: 1/2019
Origination: 1/2015 Next Review: 1/2020

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will not provide coverage Cardiovascular Risk Panels. This is considered screening.

When Policy Topic is covered
Not applicable.

When Policy Topic is not covered
Cardiovascular risk panels, consisting of multiple individual biomarkers intended to assess cardiac risk (other than simple lipid panels, see Considerations), are considered non-covered screening.

Considerations
A simple lipid panel is generally composed of the following lipid measures:
- Total cholesterol
- LDL cholesterol
- HDL cholesterol
- Triglycerides

Certain calculated ratios, such as the total/HDL cholesterol may also be reported as part of a simple lipid panel.

Other types of lipid testing, ie, apolipoproteins, lipid particle number or particle size, lipoprotein (a), etc., are not considered to be components of a simple lipid profile.

This policy does not address the use of panels of biomarkers in the diagnosis of acute myocardial infarction.

There is no specific CPT code for cardiovascular risk panels. If there are CPT codes for the component tests in the panel and there is no algorithmic analysis used, the individual CPT codes may be reported. Examples of possible components codes include:
81291: MTHFR (5,10-methylenetetrahydrofolate reductase) (eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)
82465: Cholesterol, serum or whole blood, total
82652: Vitamin D; 1,25 dihydroxy, includes fraction(s), if performed
83090: Homocysteine
83698: Lipoprotein-associated phospholipase A2 (Lp-PLA2)
83718: Lipoprotein, direct measurement; high density cholesterol (HDL cholesterol)
83721: Lipoprotein, direct measurement; LDL cholesterol
83880: Natriuretic peptide
84478: Triglycerides
86141: C-reactive protein; high sensitivity (hsCRP)

If the testing involves multiple analytes and an algorithmic analysis, the unlisted multianalyte assay with algorithmic analysis (MAAA) code 81599 would be reported.

Description of Procedure or Service

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>With risk factors for</td>
<td>Cardiovascular risk panels</td>
<td>Management of clinical risk factors with or</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td>cardiovascular disease</td>
<td></td>
<td>or without simple lipid testing</td>
<td>• Test validity</td>
</tr>
</tbody>
</table>

Cardiovascular risk panels refer to different combinations of cardiac markers that are intended to evaluate risk of cardiovascular (CV) disease. There are numerous commercially available risk panels that include different combinations of lipids, noncardiac biomarkers, measures of inflammation, metabolic parameters, and/or genetic markers. Risk panels report the results of multiple individual tests, as distinguished from quantitative risk scores that combine the results of multiple markers into one score.

The evidence for the use of cardiovascular risk panels in individuals with risk factors for cardiovascular disease includes multiple cohort and case-control studies and systematic reviews of these studies. Relevant outcomes include test accuracy and validity, other test performance measures, change in disease status, and morbid events. The available evidence from cohort and case-control studies indicates that many of the individual risk factors included in cardiovascular risk panels are associated with increased risk of CV disease. However, it is not clear how the results of individual risk factors impact management changes, so it is also not certain how the panels will impact management decisions. Given the lack of evidence for clinical utility of any individual risk factor beyond simple lipid measures, it is unlikely that the use of CV risk panels improves outcome. Studies that have evaluated the clinical validity of panels of multiple markers have not assessed management changes that would occur as a result of testing, or
demonstrated improvements in outcomes. The evidence is insufficient to
determine the effects of the technology on health outcomes.

Background
CV disease remains the single largest cause of morbidity and mortality in the
developed world. As a result, accurate prediction of CV risk is a component of
medical care that has the potential to focus and direct preventive and diagnostic
activities. Current methods of risk prediction in use in general clinical care are not
highly accurate, and as a result there is a potential unmet need for improved risk
prediction instruments.

Components of CV risk include family history, cigarette smoking, hypertension,
and lifestyle factors such as diet and exercise. In addition, numerous laboratory
tests have been associated with CV risk, most prominently lipids such as low-
density lipoprotein (LDL) and high-density lipoprotein (HDL). These clinical and
lipid factors are often combined into simple risk prediction instruments, such as
the Framingham Risk Score (FRS).(1) The Framingham Risk Score provides an
estimate of the 10-year risk for developing cardiac disease and is currently used in
clinical care to determine the aggressiveness of risk factor intervention, such as
the decision to treat hyperlipidemia with statins.

Many additional biomarkers, genetic factors and radiologic measures have been
associated with increased risk of CV disease. Over 100 emerging risk factors have
been proposed as useful for refining estimates of cardiovascular risk.(2-4) Some
general categories of these potential risk factors are as follows:

- **Lipid markers.** In addition to LDL and HDL, other lipid markers may have
 predictive ability, including the apolipoproteins, lipoprotein (a), lipid
 subfractions, and/or other measures.

- **Inflammatory markers.** Many measures of inflammation have been linked to
 the likelihood of CV disease. High-sensitivity C-reactive protein (CRP) is an
 example of an inflammatory marker; others include fibrinogen, interleukins,
 and tumor necrosis factor.

- **Metabolic syndrome biomarkers.** Measures associated with metabolic
 syndrome, such as specific dyslipidemic profiles or serum insulin levels, have
 been associated with increased risk of CV disease.

- **Genetic markers.** A number of mutations associated with increased
 thrombosis risk, such as the MTHFR mutation or the prothrombin gene
 mutations, have been associated with increased CV risk. In addition, numerous
 single nucleotide polymorphisms (SNPs) have been associated with CV disease
 in large genome-wide studies.

CVD risk panels may contain measures from one or all of the previous categories
and may include additional measures not previously listed such as radiologic
markers (carotid CMT, calcium score). Some cardiovascular risk panels are
relatively limited, including a few markers in addition to standard lipids. Others
include a wide variety of potential risk factors from a number of different
categories, often including both genetic and nongenetic risk factors. Other panels
are composed entirely of genetic markers.
Some examples of commercially available CV risk panels are as follows:

- **Health Diagnostics Cardiac Risk Panel**: MTHFR gene analysis, common variants; vitamin D, 1,25 dihydroxy; B-type natriuretic peptide (BNP); Lp-PLA2; myeloperoxidase; apolipoprotein; immune complex assay; lipoprotein, blood; electrophoretic separation and quantitation; very long chain fatty acids; total cholesterol; HDL; LDL; triglycerides; (high-sensitivity CRP, hs-CRP); lipoprotein (a); insulin, total; fibrinogen; apolipoprotein analysis; multiple SNPs associated with coronary artery disease (CAD).

- **Genova Diagnostics CV Health Plus Genomics™ Panel**: apo E; prothrombin; factor V leiden; fibrinogen; HDL; HDL size; HDL particle number; homocysteine; LDL; LDL size; LDL particle number; lipoprotein (a); LP-PLA2; MTHFR gene; triglycerides; very low-density lipoprotein (VLDL); VLDL size; vitamin D; hs-CRP.

- **Genova Diagnostics CV Health Plus™ Panel**: fibrinogen; HDL; HDL size; HDL particle number; homocysteine; LDL; LDL size; LDL particle number; lipid panel; lipoprotein (a); LP-PLA2; triglycerides; VLDL; VLDL size; vitamin D; hs-CRP.

- **Cleveland HeartLab CVD Inflammatory Profile**: hs-CRP, urinary microalbumin, myeloperoxidase, Lp-PLA2, F2-isoprostanes.

- **Genetiks Genetic Diagnosis and Research Center Cardiovascular Risk Panel**: factor V leiden, factor V R2, Prothrombin gene, factor XIII, fibrinogen - 455, PAI-1, GPIIIIs (HPA-1), MTHFR, ACE I/D, apo B, apo E.

- **Singulex® cardiac-related test panels**: Several panels of markers related to cardiac dysfunction, vascular inflammation and dysfunction, dyslipidemia, and cardiometabolic status are offered by Singulex (Alameda, CA). Some of these panels are offered in conjunction with a cardiovascular disease testing and wellness management service. The test panels use an immunoassay method referred to as “Proprietary high-precision Single Molecule Counting [SMC] technology.”
 - Cardiac Dysfunction panel: SMC™ cTnl (high-sensitivity troponin), NT-proBNP
 - Vascular Inflammation and Dysfunction panel: SMC™ IL-6, SMC™ IL-17A, SMC™ TNFα, SMC™ Endothelin, Lp-PLA2, hs-CRP, homocysteine, vitamin B12, folate.
 - Dyslipidemia panel: Total Cholesterol, LDL-C (direct), apo B, sdLDL, HDL-C, apo A-1, HDL2b, triglycerides, Lp(a)
 - Cardiometabolic panel: parathyroid, vitamin D, calcium, magnesium, leptin, adiponectin, ferritin, cortisol, cystatin C, hemoglobin A1C, glucose, insulin, thyroid stimulating hormone (TSH), T3 and free T4, uric acid, liver panel, renal panel, thyroid peroxidase antibody, and thyroglobulin antibody.
In addition to panels that are specifically focused on cardiovascular risk, a number of commercially-available panels include markers associated with cardiovascular health along with a range of other markers that have been associated with inflammation, thyroid disorders and other hormonal deficiencies, and other disorders. Examples of these panels include:

- **Singulex cardiometabolic panel** (described above).
- **WellnessFX (San Francisco, CA) Premium**: total cholesterol, HDL, LDL, triglycerides, ApoA1, ApoB, LP(a), Lp-PLA2, omega-3 fatty acids, free fatty acids, lipid particle numbers, lipid particle sizes, BUN/creatinine, AST/ALT, total bilirubin, albumin, total protein, DHEA, free testosterone, total testosterone, estradiol, sex hormone binding globulin, cortisol, insulin-like growth factor (ILGF)-1, insulin, glucose, hemoglobin A1C, total T4, T3 uptake, free T4 index, TSH, total T3, free T3, reverse T3, free T4, hs-CRP, fibrinogen, homocysteine, complete blood count (CBC) with differential, calcium, electrolytes, bicarbonate, ferritin, total iron binding capacity, vitamin B12, RBC magnesium, 25-hydroxy vitamin D, progesterone, follicle stimulating hormone, leuteinizing hormone.

Regulatory Status

Multiple assay methods for cardiac risk marker components, such as lipid panels and other biochemical assays, have clearance for marketing through the FDA 510(k) process.

Other components of testing panels are laboratory-developed tests. Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Act (CLIA). Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

Rationale

This evidence review was created in November 2013 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through October 26, 2017.

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the
scope of these reviews, and credible information on technical reliability is available from other sources.

There is a large amount of literature on the association of individual risk factors with cardiovascular disease (CVD). Most of this literature evaluates correlations between individual biomarkers and the presence of, or future development of, CVD. A framework for the evaluation of the clinical utility of risk factor assessment includes the following steps:

1. Standardization of the measurement of the risk factor.
2. Determination of its contribution to risk assessment. As a risk factor, it is important to determine whether the novel risk factor independently contributes to risk assessment compared with established risk factors. Also, because there are many potential novel risk factors that could be incorporated into existing CVD risk panels, it is important to understand the relation between each risk factor and other risk factors.
3. Determination of how the novel risk assessment will be used in the management of the patient, compared with standard methods of assessing risk, and whether any subsequent changes in patient management result in an improvement in patient outcome.

Helfand et al (2009) have suggested a similar framework for evaluating the utility of risk factors that includes the concept of reclassifying patients into clinically relevant risk factors. These suggested criteria are as follows:

- Risk factor should be easily and reliably measured.
- Risk factor should be an independent predictor of major cardiovascular events in patients with an intermediate risk of CVD and no history of CVD.
- Risk factor should reclassify a substantial portion of intermediate risk patients as high-risk.
- Reclassified individuals should be managed differently than they otherwise would have been.
- If other risk factors provide similar prognostic information, then convenience, availability, cost, and safety should be considered in choosing among them.

Cardiovascular Disease Risk Testing Panels

Clinical Context and Test Purpose

The purpose of CVD risk panel testing in patients who have risk factors for CVD is to inform management and treatment decisions.

The question addressed in this evidence review is: Does use of CVD risk panels in patients who have a risk for CVD improve health outcomes?

The following PICOTS were used to select literature to inform this review.
Patients
The relevant population of interest is individuals with risk factors for CVD.

Interventions
The relevant intervention of interest is testing with CVD risk panels.

Comparators
The comparator of interest is the management of clinical risk factors with or without simple lipid testing.

Outcomes
The beneficial outcomes of interest are decreased in morbidity and mortality from CVD.

Timing
Development of CVD occurs over many years and manifests as coronary heart disease (CHD), CVD, or peripheral arterial disease. The timing for measuring outcomes can range from 5 to ten years.

Setting
Patients who have risk factors for CVD are initially managed in primary care. Patients who have had a CV event may be followed in specialty clinics by cardiologists and neurologists.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid

Association Between Single Risk Markers and CVD Risk
There is a large evidence base on the association between individual risk markers and CVD risk. Many observational studies have established that individual risk markers are independent predictors of cardiac risk. In 2013, van Holten et al conducted a systematic review of meta-analyses of prospective studies evaluating the association between serologic biomarkers and primary CV events (ie, CV events and stroke in CVD-naive populations) and secondary CV events (ie, CV events and stroke in populations with a history of CVD). The final data synthesis included 85 studies published from 1988 to 2011. Sixty-five meta-analyses reported biomarkers’ association with primary CV events and 43 reported associations with secondary CV events. Eighteen meta-analyses reported biomarkers’ association with ischemic stroke in patients with a history of CVD. Only 2 meta-analyses that reported associations with ischemic stroke in patients with no history of CVD were identified, and results were not reported. CVD risks for markers with the strongest associations are summarized in Table 1.
Table 1. Serum Biomarkers and CVD Risk

<table>
<thead>
<tr>
<th>Marker</th>
<th>RR, HR, or OR</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction of CV events in patients with no history of CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>2.43 (RR)</td>
<td>2.10 to 2.83</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>2.33 (HR)</td>
<td>1.91 to 2.84</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.44 (HR)</td>
<td>0.42 to 0.48</td>
</tr>
<tr>
<td>Apo B</td>
<td>1.99 (RR)</td>
<td>1.65 to 2.39</td>
</tr>
<tr>
<td>Apo A:Apo B ratio</td>
<td>1.86 (RR)</td>
<td>1.55 to 2.22</td>
</tr>
<tr>
<td>HDL</td>
<td>1.83 (HR)</td>
<td>1.65 to 2.03</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>1.83 (HR)</td>
<td>1.19 to 2.80</td>
</tr>
<tr>
<td>Prediction of CV events in patients with a history of CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn I and T</td>
<td>9.39 (OR)</td>
<td>6.46 to 13.67</td>
</tr>
<tr>
<td>High-sensitivity C-reactive protein</td>
<td>5.65 (OR)</td>
<td>1.71 to 18.73</td>
</tr>
<tr>
<td>Creatinine</td>
<td>3.98 (HR)</td>
<td>3.02 to 5.24</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>2.62 (RR)</td>
<td>2.05 to 3.37</td>
</tr>
<tr>
<td>Prediction of ischemic stroke in patients with a history of CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>1.75 (HR)</td>
<td>1.55 to 1.98</td>
</tr>
<tr>
<td>Uric acid</td>
<td>1.47 (RR)</td>
<td>1.19 to 1.76</td>
</tr>
</tbody>
</table>

Adapted from van Holten et al (2013). A

Apo: apolipoprotein; cTn: cardiac troponin; CV: cardiovascular; CVD: cardiovascular disease; HDL: high-density lipoprotein; HR: hazard radio; OR: odds ratio; RR: relative risk.

Since the publication of the van Holten review, multiple studies have reported on the associations between various risk factors and CVD outcomes. Representative examples of reported associations include: endothelin-1 in predicting mortality in patients who had heart failure with reduced ejection fraction; troponin and B-type natriuretic peptide in predicting CVD-related death; growth differentiation factor and interleukin 6 (IL-6) with CVD- and non-CVD-related death; and mid-regional pro-atrial natriuretic peptide and C-terminal pro-endothelin-1 with morbidity and mortality after cardiac surgery.

In 2016, Kunutsor et al published both a primary analysis and meta-analysis of current studies evaluating the association between levels of paraoxonase-1 (PON-1) and CVD risk; for all analyses, the primary end point was first-onset CVD. Of 6902 patients drawn from the PREVEND study, the mean age was 48 years, and 3321 (48%) of the patients were men; for the meta-analysis, researchers used data from 6 studies (total N=15,064 patients). The authors noted that PON-1 activity showed a log-linear association with CVD risk, but compared the independence of PON-1 with that of high-density lipoprotein cholesterol (HDL-C). In a model adjusted for known risk factors and confounding elements, PON-1 had a hazard ratio (HR) of 0.93 (95% confidence interval [CI], 0.86 to 0.99; p=0.037); comparatively, HDL-C showed a stronger association with risk of CVD, given the same adjustments (HR=0.84; 95% CI, 0.76 to 0.94; p=0.002). Also, the HR for PON-1 was no longer statistically significant when the model accounted for HDL-C (0.95; 95% CI, 0.88 to 1.02; p=0.153), suggesting that the link between PON-1 and HDL-C inhibits the independence of PON-1 as a risk marker. Secondary end points were CHD and stroke; for CHD, as with CV events, HRs for PON-1 were
not statistically significant when fully adjusted for confounders (p=0.058) and HDL-C (p=0.471), compared with a strong association between HDL-C and CHD (0.67; 95% CI, 0.57 to 0.78; p<0.001). The meta-analysis was limited by considerable heterogeneity between studies but resulted in a pooled relative risk of 0.87 (95% CI, 0.80 to 0.96; p=0.005), reported as the CV event per 1 standard deviation increase in PON-1 values. Acknowledging the link between PON-1 and HDL-C as risk markers, the authors concluded that PON-1 added “no significant improvement in CVD risk assessment beyond conventional CVD risk factors.”

A 2017 prospective cohort study by Harari et al analyzed the association between non-HDL-C levels and CVD mortality in a long-term follow-up of 4832 men drawn from the Cardiovascular Occupational Risk Factor Determination in Israel Study (CORDIS). Patients were between the ages of 20 and 70 years (mean age, 42.1 years at baseline); all completed multiple questionnaires that evaluated medical history and possible risk factors for CVD, in addition to blood tests. Before adjusting for potential confounders, a positive association was found between several comparator cholesterol categories (simple lipids including total cholesterol, triglycerides, and HDL-C) and all-cause or CVD mortality; however, in multivariate analysis, many of these associations were no longer statistically significant.

For one of the primary outcomes (the efficacy of non-HDL-C in predicting CVD mortality), after adjusting for the known risk factors, results were statistically significant, with an association between non-HDL-C levels greater than 190 mg/dL and risk of mortality from CVD (HR=1.80; 95% CI, 1.10 to 2.95; p=0.020). Another primary outcome was the prediction value of non-HDL for all-cause mortality; for this outcome, the association between all levels of non-HDL-C were not statistically insignificant after adjusting for potential confounders (for 130-159 mg/dL, p=0.882; 160-189 mg/dL, p=0.611; ≥190 mg/dL, p=0.464); likewise, the association between simple lipids and all-cause mortality was not statistically significant after adjusting for confounders. The authors also acknowledged that the association between CVD mortality and higher non-HDL-C levels (≥190 mg/dL) was not statistically significant when adjusting for low-density lipoprotein cholesterol (HR=2.39; 95% CI, 0.92 to 6.13; p=0.073), but concluded that given the trends in p values, non-HDL-C levels appeared superior at predicting mortality, compared with simple lipid testing.

Risk Markers and CVD Risk Reclassification

Other studies have demonstrated that risk markers can be used to reclassify patients into different risk categories. Helfand et al (2009) reported on a summary of 9 systematic reviews evaluating novel risk factors’ association with coronary heart disease (CHD). Of the laboratory risk factors evaluated, C-reactive protein (CRP), homocysteine, and lipoprotein (a) were independent predictors of major CHD events when added to the Framingham Risk Score (FRS). However, none of the available systematic reviews evaluated the effect of each novel risk factor on risk classification among patients classified as intermediate risk by the FRS. In a 2012 study of 165,544 patients without baseline CVD enrolled in 37 prospective cohorts, the addition of individual novel lipid-related risk factors to conventional risk-classification models including total cholesterol and HDL-C, net reclassification
improvements were less than 1% with the addition of each of these markers to risk scores containing conventional risk factors.13

Association Between Multimarker Panels and CVD Risk

A more limited body of literature has evaluated the association between panels of markers and CVD risk and/or the reclassification of patients into different risk categories.

Greisenegger et al (2015) evaluated the association between a panel of biomarkers and mortality after transient ischemic attack and minor ischemic stroke.14 The study population included 929 patients who were enrolled from 2002-2007 and followed until 2013. Fifteen potential risk markers were prospectively measured (IL-6, CRP, neutrophil-gelatinase-associated lipocalin, soluble tumor necrosis factor α receptor-1 [sTNFR-1], thrombomodulin, fibrinogen, von Willebrand factor [vWF], P-selectin, protein Z, D-dimer, antiphosphorylcholin, N-terminal pro-B-type natriuretic peptide [NT-proBNP], heart-type fatty acid binding protein [HFABP], neuron-specific enolase, brain-derived neurotrophic factor). None of the biomarkers was predictive of nonfatal ischemic stroke or myocardial infarction (MI). Six factors were individually associated with CVD death, of which the four with the strongest association (vWF, HFABP, NT-proBNP, sTNFR-1) were entered into a predictive model. The independent contribution of the 4 biomarkers taken together added more prognostic information than the established clinical risk factors used in a conventional model (clinical risk factors: p=0.002; 4 biomarkers: p<0.001).

Cho et al (2015) reported on the impact of 6 biomarkers (high-sensitivity CRP [hs-CRP]; IL-6; receptor for advanced glycation end products; lipoprotein-associated phospholipase A\textsubscript{2}; adiponectin; regulated on activation, normal T cell expressed and secreted) on CVD risk classification in a case-control study of 503 patients with coronary artery disease and 503 healthy controls.15 The addition of the 6 novel biomarkers to the multivariable risk prediction model led to an improvement in the C statistic (0.953 vs 0.937, p<0.001). However, the performance of the model in a cohort not enriched with coronary artery disease patients is unknown.

In 2017, Keller et al conducted a case-control study of the prognostic ability of a panel of 5 micro-RNAs (miR-34a, miR-223, miR-378, miR-499, miR-133), using 2 cohorts with patients randomly selected from previous studies; the combined primary outcome was overall mortality and CV events.16 In the derivation cohort, 21 of 178 patients experienced a CV event and/or death within 5 years; in the validation cohort, which excluded patients with a history of CVD, 64 of 129 patients died during a 12-year follow-up. While the individual micro-RNAs lacked a significant association with outcome, the panel as a whole improved both prognostic and predictive value for overall mortality, particularly when adjusted for FRS variables (HR=2.89; 95% CI, 1.32 to 6.33; p=0.008). For the derivation cohort, the investigators reported an increase in the AUC curve from 0.77 to 0.85 with the addition of the miR panel in predicting mortality risk within 5 years (p=0.039); this improvement was confirmed by a net reclassification index (NRI) of 0.42 in the validation cohort (p=0.014). The authors reported that the C index
was statistically unaffected by the miR panel, but that the miR panel was significantly associated with mortality in the validation cohort (HR=1.31; 95% CI, 1.03 to 1.66; p=0.03).

Wilsgaard et al (2015) evaluated 51 protein biomarkers for association with risk of incident MI with the goal of developing a clinically significant risk model that would add information to conventional risk models.17 Patients were drawn from a population-based cohort study to form a case-control study, with 419 cases who experienced the first-ever MI within the 10-year follow-up and 398 controls randomly selected from participants who had no MI during the follow-up. Fifty-one markers were selected for evaluation based on previously reported associations and the availability of immunoassay techniques and passage of internal quality controls. Seventeen markers were predictive of MI after adjustment for traditional CVD risk factors. By adding risk markers back into the traditional risk factor-based model, the authors determined that a composite of apo B/apo AI, plasma kallikrein, lipoprotein (a), and matrix metalloproteinase 9 increased the model’s area under the receiver operating curve by 0.027, with an NRI of 9%.

Guarrera et al evaluated DNA methylation profiles and LINE-1 hypomethylation in the prediction of MI in 2015, analyzing data from 609 cases and 554 controls drawn from the Italian European Prospective Investigation into Cancer and Nutrition study (EPICOR), and the Dutch EPIC study (EPIC-NL).18 Rather than analyze single 5'-C-phosphate-G-3' sites (CpGs) for their association with CVD, the authors focused on differentially methylated regions, as well as LINE-1 methylation profiles, adjusting models to account for their addition to traditional risk factors.

A cluster of 15 CpGs, was statistically significant in both cohorts; the region was in exon 1 of the zinc finger and BTB domain containing the protein 12 gene (\textit{ZBTB12}), and showed hypomethylation comparable between EPICOR cases and controls (effect size, -0.019; 95% CI, -0.03 to -0.01; p=1.94 x 10^{-7}, Q=0.005). Although the association was not statistically significant for women in the EPICOR cohort, the EPIC-NL cohort showed significant hypomethylation in the \textit{ZBTB12} region between cases and controls as a whole (effect size, -0.013; 95% CI, -0.02 to -0.005; p<0.001), as well as for male (effect size, -0.014; 95% CI, -0.03 to -0.001; p=0.034) and female subgroups (effect size, -0.012; 95% CI, -0.02 to -0.004; p=0.006). There was also significant association between LINE-1 hypomethylation in EPICOR cases vs controls (effect size, -0.511; 95% CI, -0.80 to -0.22; p <0.001, and this association held for the male subgroup (effect size, -0.520; 95% CI, -0.87 to -0.17; p=0.004) but not in the female subgroup (effect size, -0.496; 95% CI, -1.12 to -0.13; p=0.12). Secondary endpoints involved comparing the risk prediction for MI in the cumulative DNA methylation profile of LINE-1 sequences with that of traditional risk factors alone; while the association between LINE-1 and MI was significant for men in the EPIC-NL cohort (overall response, 1.95; 95% CI, 1.02 to 3.71; p=0.043, reference group above the median), the association was not significant for women in this same cohort (overall response, 1.05; 95% CI, 0.65 to 1.67; p=0.850). When the model included both traditional risk factors and the DNA methylation profile, NRI and
integrated discrimination improvement measures were statistically significant, compared with risk factors alone. In the EPIC-NL cohort, NRI and integrated discrimination improvement among men were 0.47 (95% CI, 0.19 to 0.76; p=0.001) and 0.04 (95% CI, 0.01 to 0.08; p=0.004), respectively; among women, they were 0.23 (95% CI, 0.02 to 0.43; p=0.034) and 0.03 (95% CI, 0.01 to 0.05; p=0.001), respectively.

A 2017 prospective cohort study by de Lemos et al evaluated a panel of 5 biomarker tests to develop a composite score to predict CVD risk.19 The 2 cohorts were drawn from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Dallas Heart Study (DHS): from MESA, 3112 (47%) patients were men; and from DHS, 969 (44%) of the patients were men, none of whom had prevalent CVD at baseline. Each test had its own prespecified level of abnormality: a 12-lead electrocardiogram measured the presence or absence of left ventricular hypertrophy; additional tests measured for coronary artery calcium levels greater than 10 U, N-terminal probrain natriuretic peptide (NT-proBNP) levels of 100 pg/mL or more, high-sensitivity cardiac troponin (hs-cTNT) levels of 5 ng/L or more, and hs-CRP levels of 3 mg/L or more. Tests data were analyzed as categorical and as continuous variables, and included models with and without all 5 test results; in all models for MESA, there was an independent association between the tests and the primary end point (global CVD). There was no association between hs-CRP and the primary outcome in the DHS cohort, between hs-CRP and a secondary outcome (atherosclerotic cardiovascular disease) in the MESA cohort, or between hs-CRP and hs-cTNT and atherosclerotic cardiovascular disease in the DHS cohort. In MESA, the C statistic for the primary outcome increased from 0.73 when adjusted for variables alone to 0.786 when adjusted for individual test results (p<0.001), and the DHS cohort showed a similar significant improvement (0.832 to 0.850; p<0.01). The category-free NRI for both cohorts were as follows: MESA NRI, 0.473 (95% CI, 0.383 to 0.563); and DHS NRI, 0.261 (95% CI, 0.052 to 0.470). Based on results from the 5 tests, the authors assigned each patient a risk score, which they suggested could aid caregivers in identifying patients who need specific treatment or changes in preventive management. Further discussion of this risk score is beyond the scope of this evidence review.

Association Between Multimarker Panels and Wellness
The preponderance of the literature on CVD risk panels have focused on the risk of specific events related to CVD (eg, stroke, MI) or on the development of CVD. With the development of panels that address “wellness” more broadly, studies were sought on the association between risk markers and measures of overall wellness or health. No empirical studies were identified. In 2015, Lara et al reported the recommendations of the U.K. Medical Research Council to develop recommendations for a panel of biomarkers for healthy aging.20 A variety of markers, some laboratory-based, associated with the physical capability and physiologic, cognitive, endocrine, immune, and sensory functions were proposed.

Clinically Useful
While multiple risk factors have been individually associated with CVD, there is no convincing evidence that the addition of any individual risk marker, or combination
of risk markers, leads to clinically meaningful changes in management that improve outcomes. In the available studies, improvements in risk prediction have generally been of a small magnitude, and/or have not been found to be associated with clinically meaningful management changes. Because of this uncertain impact on management, the clinical utility for any of the individual risk markers is either low or uncertain.

Moreover, the available evidence on individual risk markers is only of limited value in evaluating CVD risk panels. It is difficult to extrapolate the results of single risk factors to panels, given the variable composition of panels. Ideally, panels should be evaluated individually based on their impact on clinical decision making. No published studies were identified that evaluated the use of commercially available CVD risk panels as risk prediction instruments in clinical care. Some studies have attempted to incorporate novel risk markers into an overall quantitative risk score, but these risk scores are not the same as CVD risk panels, which report the results of individual risk factors.

Furthermore, there are no standardized methods for combining multiple individual risk factors with each other, or with established risk prediction instruments such as the FRS. Therefore, there is a potential for both overestimation and underestimation of the true cardiac risk. This may lead to management decisions based on an inaccurate risk assessment. As a result of these deficiencies, it is not possible to assess the impact of using CVD risk panels on health outcomes reliably.

Summary of Evidence

For individuals who have risk factors for CVD who receive CVD risk panels, the evidence includes multiple cohort and case-control studies and systematic reviews of these studies. Relevant outcomes are test accuracy and validity, other test performance measures, change in disease status, and morbid events. The available evidence from cohort and case-control studies indicates that many of the individual risk factors included in CVD risk panels are associated with increased risk of CVD. However, it is not clear how the results of individual risk factors impact management changes, so it is also uncertain how the panels will impact management decisions. Given the lack of evidence for clinical utility of any individual risk factor beyond simple lipid measures, it is unlikely that the use of CVD risk panels improves outcome. Studies that have evaluated the clinical validity of panels of multiple markers have not assessed management changes that would occur as a result of testing or demonstrated improvements in outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information

Practice Guidelines and Position Statements

In 2013, the American College of Cardiology and the American Heart Association issued joint guidelines for the assessment of cardiovascular disease risk. These guidelines recommended that age- and sex-specific pooled cohort equations,
which included total cholesterol and high-density lipoprotein to predict the 10-year risk of a first hard atherosclerotic cardiovascular disease event, be used in non-Hispanic blacks and non-Hispanic whites between 40 and 79 years of age (American Heart Association/American College of Cardiology class of recommendation I, American Heart Association/American College of Cardiology level of evidence B). Regarding newer risk markers after quantitative risk assessment, the guidelines stated the following: “If, after quantitative risk assessment, a risk-based treatment decision is uncertain, assessment of ≥1 of the following—family history, hs-CRP [high-sensitivity C-reactive protein], CAC [coronary artery calcium] score, or ABI [ankle-brachial index]—may be considered to inform treatment decision-making” (class of recommendation IIb, level of evidence B). The guidelines did not recommend other novel cardiac risk factors or panels of cardiac risk factors.

U.S. Preventive Services Task Force Recommendations

No recommendations specific to the use of cardiovascular disease risk panels were identified. In 2009, the U.S. Preventive Services Task Force (USPSTF) made the following recommendation about using nontraditional risk factors in coronary heart disease risk assessment:

“The USPSTF concludes that the evidence is insufficient to assess the balance of benefits and harms of using the nontraditional risk factors studies to screen asymptomatic men and women with no history of CHD to prevent CHD events.” Grade: I

“The nontraditional risk factors included in this recommendation are high-sensitivity C-reactive protein (hs-CRP), ankle-brachial index (ABI), leukocyte count, fasting blood glucose level, periodontal disease, carotid intima-media thickness (carotid IMT), coronary artery calcification (CAC) score on electron-beam computed tomography (EBCT), homocysteine level, and lipoprotein(a) level.”

This USPSTF recommendation is currently being updated.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

Some currently unpublished trials that might influence this review are listed in Table 2.

Table 2. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpublished</td>
<td>Guiding Evidence Based Therapy</td>
<td>894</td>
<td>Sep 2016</td>
</tr>
</tbody>
</table>
Using Biomarker Intensified Treatment in Heart Failure (terminated)

NCT00969865a Individualized Comprehensive Atherosclerosis Risk-reduction Evaluation Program (iCARE) 170 Dec 2016 (completed)

NCT: national clinical trial.

a Denotes industry-sponsored or cosponsored trial.

References

Billing Coding/Physician Documentation Information

ICD-10 Codes

Z13.6 Encounter for screening for cardiovascular disorders
Z82.41, Family history of ischemic heart disease and other diseases of the
Z82.49 circulatory system code range

There is no specific CPT code for cardiovascular risk panels. If there are CPT codes for
the component tests in the panel and there is no algorithmic analysis used, the
individual CPT codes may be reported. Examples of possible components codes include:

0119U: Cardiology, ceramides by liquid chromatography-tandem mass
spectrometry, plasma, quantitative report with risk score for major cardiovascular
events
81291: MTHFR (5,10-methylenetetrahydrofolate reductase) (eg, hereditary
hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)
82465: Cholesterol, serum or whole blood, total
82652: Vitamin D; 1,25 dihydroxy, includes fraction(s), if performed
83090: Homocysteine
83698: Lipoprotein-associated phospholipase A2 (Lp-PLA2)
83718: Lipoprotein, direct measurement; high density cholesterol (HDL
cholesterol)
83721: Lipoprotein, direct measurement; LDL cholesterol
83880: Natriuretic peptide
84478: Triglycerides
86141: C-reactive protein; high sensitivity (hsCRP)
If the testing involves multiple analytes and an algorithmic analysis, the unlisted multianalyte assay with algorithmic analysis (MAAA) code 81599 would be reported.

Additional Policy Key Words
N/A

Policy Implementation/Update Information
1/1/2015 New Policy. Cardiovascular risk panels consisting of multiple individual markers intended to assess cardiac risk are considered non-covered screening.
1/1/2016 No policy statement changes.
1/1/2017 No policy statement changes.
1/1/2018 No policy statement changes.
1/1/2019 No policy statement changes.

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.