Catheter Ablation as Treatment for Atrial Fibrillation

Policy Number: 2.02.19
Origination: 5/2008
Last Review: 8/2019
Next Review: 8/2020

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for transcatheter catheter ablation of the pulmonary veins as treatment for atrial fibrillation when it is determined to be medically necessary because the criteria shown below are met.

When Policy Topic is covered
Transcatheter radiofrequency ablation or cryoablation to treat atrial fibrillation may be considered medically necessary as a treatment for either of the following indications which have failed to respond to adequate trials of antiarrhythmic medications:
- Symptomatic paroxysmal or symptomatic persistent atrial fibrillation; or
- As an alternative to atrioventricular nodal ablation and pacemaker insertion in patients with class II or III congestive heart failure and symptomatic atrial fibrillation.

Repeat radiofrequency ablations or cryoablation may be considered medically necessary in patients with recurrence of atrial fibrillation and/or development of atrial flutter following the initial procedure. (See Considerations)

Transcatheter radiofrequency ablation or cryoablation to treat atrial fibrillation may be considered medically necessary as an initial treatment for patients with recurrent symptomatic paroxysmal atrial fibrillation (>1 episode, with 4 or fewer episodes in the previous 6 months) in whom a rhythm-control strategy is desired.

When Policy Topic is not covered
Transcatheter radiofrequency ablation or cryoablation to treat atrial fibrillation is considered investigational as a treatment for cases of atrial fibrillation that do not meet the criteria outlined above.

Considerations
Transcatheter treatment of atrial fibrillation (AF) may include pulmonary vein isolation and/or focal ablation.
There is no single procedure for catheter ablation. Electrical isolation of the pulmonary vein musculature (pulmonary vein isolation) is the cornerstone of most AF ablation procedures, but additional ablation sites may be included during the initial ablation. Potential additional ablation procedures include: creation of linear lesions within the left atrium; ablation of focal triggers outside the pulmonary veins; ablation of areas with complex fractionated atrial electrograms; and ablation of left atrial ganglionated plexi. The specific ablation sites may be determined by electroanatomic mapping to identify additional sites of excitation. As a result, sites may vary from patient to patient, even if they are treated by the same physician. Patients with long-standing persistent AF may need more extensive ablation. Similarly, repeat ablation procedures for recurrent AF generally involve more extensive ablation than do initial procedures.

As many as 30% of patients will require a follow-up (repeat) procedure, due to recurrence of AF or to development of atrial flutter. In most published studies, success rates have been based on having as many as 3 separate procedures, although these repeat procedures may be more limited in scope than the initial procedure.

Description of Procedure or Service

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: With symptomatic paroxysmal or persistent atrial fibrillation who have failed antiarrhythmic drugs</td>
<td>Interventions of interest are: • Radiofrequency ablation or Cryoablation</td>
<td>Comparators of interest are: • Medication management</td>
<td>Relevant outcomes include: • Overall survival • Symptoms • Morbid events • Quality of life</td>
</tr>
<tr>
<td>Individuals: With symptomatic atrial fibrillation and congestive heart failure who have failed rate control and antiarrhythmic drugs</td>
<td>Interventions of interest are: • Radiofrequency ablation or Cryoablation</td>
<td>Comparators of interest are: • Atrioventricular nodal ablation and pacemaker insertion</td>
<td>Relevant outcomes include: • Overall survival • Symptoms • Morbid events • Quality of life</td>
</tr>
<tr>
<td>Individuals: With recurrent symptomatic paroxysmal atrial fibrillation</td>
<td>Interventions of interest are: • Radiofrequency or cryoablation as an initial rhythm-control strategy</td>
<td>Comparators of interest are: • Medication management</td>
<td>Relevant outcomes include: • Overall survival • Symptoms • Morbid events • Quality of life</td>
</tr>
</tbody>
</table>

Atrial fibrillation (AF) frequently arises from an abnormal focus at or near the junction of the pulmonary veins and the left atrium, thus leading to the feasibility of more focused ablation techniques directed at these structures. Catheter-based ablation, using radiofrequency ablation (RFA) or cryoablation, is being studied as a treatment option for various types of AF.

For individuals who have symptomatic paroxysmal or persistent AF who have failed antiarrhythmic drugs who receive RFA or cryoablation, the evidence includes multiple randomized controlled trials (RCTs) and systematic reviews. Relevant
outcomes are overall survival, symptoms, morbid events, and quality of life. RCTs comparing RFA with antiarrhythmic medications have reported that freedom from AF is more likely after ablation than after medications. Results of long-term follow-up (5-6 years) after ablation have demonstrated that late recurrences continue in patients who are free of AF at 1 year. However, most patients who are AF-free at 1 year remain AF-free at 5 to 6 years. Multiple RCTs comparing cryoablation and RFA have found that cryoablation is noninferior to RFA for AF control. RFA and cryoablation differ in their adverse effect profiles. For example, cryoablation is associated with higher rates of phrenic nerve paralysis, but may permit a shorter procedure time. Given currently available data, it would be reasonable to consider both RFA and cryoablation effective for catheter ablation of AF foci or pulmonary vein isolation, provided there is a discussion about the risks and benefits of each. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have symptomatic AF and congestive heart failure who have failed rate control and antiarrhythmic drugs who receive RFA or cryoablation, the evidence includes a TEC Assessment, supported by RCTs. Relevant outcomes are overall survival, symptoms, morbid events, and quality of life. Based on 1 available multicenter RCT, the TEC Assessment found that the evidence was sufficient to conclude that catheter ablation improves outcomes more than the alternative, atrioventricular (AV) nodal ablation and pacemaker insertion. Findings from this RCT have been supported by other comparative studies, which have reported improvements in AF. It is reasonable to consider both RFA and cryoablation effective for catheter ablation of AF foci or pulmonary vein isolation, provided that there is a discussion about the risks and benefits of each. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have recurrent symptomatic paroxysmal AF who receive RFA or cryoablation as an initial rhythm-control strategy, the evidence includes RCTs and systematic reviews. Relevant outcomes are overall survival, symptoms, morbid events, and quality of life. Two RCTs with low risk of bias compared catheter ablation for pulmonary vein isolation to antiarrhythmic medications. One RCT demonstrated reduced rates of AF recurrence, while the other reported reduced cumulative overall AF burden. Together, these results suggest that, when a rhythm-control strategy is desired, catheter ablation is a reasonable alternative to antiarrhythmic drug therapy. While the RCTs comparing ablation to medical therapy were conducted using RFA, it is reasonable to consider both RFA and cryoablation effective for catheter ablation of AF foci or pulmonary vein isolation, provided that there is a discussion about the risks and benefits of each. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Background

Atrial fibrillation is the most common cardiac arrhythmia, with a prevalence estimated at 0.4% of the population, increasing with age. The underlying mechanism of atrial fibrillation involves an interplay between electrical triggering
events and the myocardial substrate that permits propagation and maintenance of the aberrant electrical circuit. The most common focal trigger of atrial fibrillation appears to be located within the cardiac muscle that extends into the pulmonary veins.

Atrial fibrillation accounts for approximately one-third of hospitalizations for cardiac rhythm disturbances. Symptoms of atrial fibrillation, e.g., palpitations; decreased exercise tolerance; and dyspnea, are primarily related to poorly controlled or irregular heart rate. The loss of atrioventricular (AV) synchrony results in a decreased cardiac output, which can be significant in patients with compromised cardiac function. In addition, patients with atrial fibrillation are at higher risk for stroke, and anticoagulation is typically recommended. Atrial fibrillation is also associated with other cardiac conditions, such as valvular heart disease, heart failure, hypertension, and diabetes. Although episodes of atrial fibrillation can be converted to normal sinus rhythm using either pharmacologic or electroshock conversion, the natural history of atrial fibrillation is one of recurrence, thought to be related to fibrillation-induced anatomic and electrical remodeling of the atria.

Atrial fibrillation can be subdivided into 3 types:
- paroxysmal (episodes that last fewer than 7 days and are self-terminating),
- persistent (episodes that last for more than 7 days and can be terminated pharmacologically or by electrical cardioversion), or
- permanent.

Treatment strategies can be broadly subdivided into rate control, in which only the ventricular rate is controlled and the atria are allowed to fibrillate, or rhythm control, in which there is an attempt to re-establish and maintain normal sinus rhythm. Rhythm control has long been considered an important treatment goal for management of atrial fibrillation, although its primacy has recently been challenged by the results of several randomized trials that reported that pharmacologically maintained rhythm control offered no improvement in mortality or cardiovascular morbidity compared to rate control.

Currently, the main indications for a rhythm control are for patients with paroxysmal or persistent atrial fibrillation who have hemodynamic compromise associated with episodes of atrial fibrillation or who have bothersome symptoms despite adequate rate control. A rhythm-control strategy involves initial pharmacologic or electronic cardioversion, followed by pharmacologic treatment to maintain normal sinus rhythm. However, antiarrhythmic medications are often not effective in maintaining sinus rhythm. As a result, episodes of recurrent atrial fibrillation are typical, and patients with persistent atrial fibrillation may require multiple episodes of cardioversion. Implantable atrial defibrillators, which are designed to detect and terminate an episode of atrial fibrillation, are an alternative in patients otherwise requiring serial cardioversions, but these have not yet achieved widespread use. Patients with paroxysmal atrial fibrillation, by definition, do not require cardioversion but may be treated pharmacologically to prevent further arrhythmic episodes.
Treatment of permanent atrial fibrillation focuses on rate control, using either pharmacologic therapy or ablation of the AV node, followed by ventricular pacing. Although AV nodal ablation produces symptomatic improvement, it does entail lifelong anticoagulation (due to the ongoing fibrillation of the atria), loss of AV synchrony, and lifelong pacemaker dependency. Implantable defibrillators are contraindicated in patients with permanent atrial fibrillation.

The treatment options above are not curative. A variety of ablative procedures have been investigated as potentially curative approaches, or modifying the arrhythmia so that drug therapy becomes more effective. Ablative approaches focus on interruption of the electrical pathways that contribute to AF through modifying the arrhythmia triggers and/or the myocardial substrate that maintains the aberrant rhythm. The maze procedure, an open surgical procedure often combined with other cardiac surgeries (eg, valve repair), is an ablative treatment that involves sequential atriotomy incisions designed to create electrical barriers that prevent the maintenance of AF. Because of the highly invasive nature of this procedure, it is currently mainly reserved for patients undergoing open heart surgery for other reasons (eg, valve repair, coronary artery bypass grafting).

Radiofrequency ablation using a percutaneous catheter-based approach is a widely used technique for a variety of supraventricular arrhythmias, in which intracardiac mapping identifies a discrete arrhythmogenic focus that is the target of ablation. The situation is more complex for atrial fibrillation, since there is not a single arrhythmogenic focus. Since the inception of ablation techniques in the early 1990s, there has been a progressive understanding of the underlying electrical pathways in the heart that are associated with atrial fibrillation. In the late 1990s, it was recognized that atrial fibrillation most frequently arose from an abnormal focus at or near the junction of the pulmonary veins and the left atrium, thus leading to the feasibility of more focused, percutaneous ablation techniques. The basic strategies that have emerged for focal ablation within the pulmonary veins, as identified by electrophysiologic mapping, are segmental ostial ablation guided by pulmonary vein potential (electrical approach), or circumferential pulmonary vein ablation (anatomic approach).

The individual lesion set (in addition to the pulmonary vein isolation) and the degree to which the pulmonary vein antrum is electrically isolated vary. Research is ongoing into specific ablation/pulmonary vein isolation techniques is ongoing. Evidence from a randomized controlled trial (RCT) comparing pulmonary vein isolation alone with pulmonary vein isolation plus ablation of electrograms showing complex fractionated activity and with pulmonary vein isolation plus additional linear ablation across the left atrial roof and mitral valve isthmus suggests that the more extensive lesion sets do not reduce the AF recurrence rate.⁴ Meta-analyses have found that the addition of complex fractionated atrial electrogram ablation to pulmonary vein isolation alone did not improve rates of freedom from recurrent AF, even though at least 1 RCT has reported that patients with ablation of dormant conduction sources outside the pulmonary veins had fewer arrhythmia recurrences than those treated with pulmonary vein isolation alone.⁶
Circumferential pulmonary vein ablation using radiofrequency energy is the most common approach at present. The procedure also can be done using cryoablation technology. Use of current radiofrequency catheters for AF has a steep learning curve because they require extensive guiding to multiple ablation points. One of the potential advantages of cryoablation is that cryoablation catheters have a circular or shaped end point, permitting a “one-shot” ablation. Other types of radiofrequency catheters, which incorporate circular or otherwise shaped end points, may also be used.

Repeat procedures following an initial radiofrequency ablation are commonly performed if atrial fibrillation recurs or if atrial flutter develops post-procedure. The need for repeat procedures may, in part, depend on clinical characteristics of the patient (age, persistent vs. paroxysmal atrial fibrillation, atrial dilatation, etc.), and the type of initial ablation performed. Repeat procedures are generally more limited than the initial procedure. For example, in cases where electrical reconnections occur as a result of incomplete ablation lines, a “touch up” procedure is done to correct gaps in the original ablation. In other cases where atrial flutter develops following ablation, a “flutter ablation” is performed, which is more limited than the original atrial fibrillation ablation procedure. A number of clinical and demographic factors have been associated with the need for a second procedure, including age, length of atrial fibrillation, permanent atrial fibrillation, left atrial size, and left-ventricular ejection fraction.

Outcome Assessment in AF

Various outcomes for the treatment of AF may be considered. The mortality and morbidity related to AF (eg, cardiovascular mortality, stroke, heart failure) are the most important clinical outcomes. However, they are uncommon events, and currently available trials have not been powered to detect differences in these outcomes. Quality of life (QOL) is also an important outcome because QOL measures reflect important manifestations of AF, such as symptoms and reduced exercise tolerance. AF has been shown to be associated with lower QOL scores, and maintenance of sinus rhythm has been associated with higher QOL scores for patients with paroxysmal AF.

Recurrence of AF is a more problematic outcome measure because the intermittent and often transient nature of recurrences makes accurate measurement difficult. This outcome measure has been reported in different ways. For example, the proportion of patients in sinus rhythm at the end of the study, the time to the first recurrence, and the number of recurrences within a period have been reported. Shemin et al (2007) highlighted the difficulties in measuring AF recurrence and recommended a measure of AF “burden,” defined as the percentage of time an individual is in AF, as the optimal measure of treatment efficacy. However, this parameter requires continuous monitoring over a relatively long period, which is inconvenient for patients, resource intensive, and usually not pragmatic in patients who do not already have an implanted pacemaker.
Recommendations for outcome assessment in trials of AF treatment were included in the 2006 American College of Cardiology, American Heart Association, and European Society of Cardiology practice guidelines for the treatment of AF. These guidelines pointed out that the appropriate end points for evaluation of treatment efficacy in patients with paroxysmal or persistent AF have little in common. For example, in studies of persistent AF, the proportion of patients in sinus rhythm at the end of follow-up is a useful end point, but this end point is less useful in studies of paroxysmal AF. Given all these variables, ideally, controlled clinical trials would report a range of outcomes (including QOL) and complications in homogeneous patient groups and compare them with the most relevant treatment alternatives (e.g., pharmacologic therapy, defibrillator therapy, AV nodal ablation), depending on the classification of AF (paroxysmal, persistent, permanent).

Regulatory Status

In February 2009, the NaviStar® ThermoCool® Irrigated Deflectable Diagnostic/Ablation Catheter and EZ Steer ThermoCool NAV Catheter (Biosense Webster) received expanded approval by the U.S. Food and Drug Administration (FDA) through the premarket approval process for RFA to treat drug-refractory recurrent symptomatic paroxysmal AF. FDA product code: OAD.

Devices using laser or cryoablation techniques for substrate ablation have been approved by FDA through the PMA process for atrial fibrillation (FDA product code: OAE). These devices include:

- Arctic Front™ Cardiac CryoAblation Catheter and CryoConsole (Medtronic, Minneapolis, MN) in December 2010.
- TactiCath™ Quartz Catheter and TactiSysQuartz® Equipment (St. Jude Medical, St. Paul, MN) in October 2014.
- HeartLight® Endoscopic Ablation System (Cardiofocus, Marlborough, MA) in April 2016.
- The Freezor™ Xtra Catheter (Medtronic) in 2016.

In addition, the FDA has also granted PMA approval to numerous catheter ablation systems for other ablation therapy for arrhythmias such as supraventricular tachycardia, atrial flutter, and ventricular tachycardia.

Rationale

This evidence review was created in July 2004 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through April 5, 2018.

Broadly defined, health outcomes are length of life, quality of life (QOL), and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.
To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

In patients with paroxysmal or persistent atrial fibrillation (AF), catheter ablation may be considered an alternative to drug therapy. In patients with permanent AF, catheter ablation may be considered an alternative to drug therapy or atrioventricular (AV) nodal ablation and pacing. For all types of AF, it is possible that catheter ablation may not be curative as a sole treatment but might alter the underlying myocardial triggers or substrate in such a way that subsequent pharmacologic therapy may become more effective.

There is an ongoing controversy about the relative benefits of rhythm vs rate control in AF, which underlies the evaluation of evidence on catheter ablation. Randomized trials of pharmacologic therapies have not demonstrated the superiority of rhythm control vs rate control. However, the apparent equivalency of these 2 strategies with pharmacologic therapy cannot be extrapolated to the rhythm control achieved with ablation. Antiarrhythmic medications used for rhythm control are only partially effective and have serious complications, including proarrhythmic properties, which can be lethal. Therefore, nonpharmacologic strategies for rhythm control have the potential to achieve outcomes superior to those seen with pharmacologic strategies.

Evidence on ablation procedures for AF was reviewed, with a focus on RCTs reporting on the AF-related outcomes of interest (see below). Also, nonrandomized studies and noncomparative studies reporting on longer term outcomes were included to evaluate for durability.

Radiofrequency Ablation for AF

Radiofrequency Ablation for Symptomatic Paroxysmal or Persistent AF

Systematic Reviews
The literature review for this evidence review was informed by a TEC Assessment (2008). Six RCTs met Assessment inclusion criteria. The trials differed in patient populations, specific catheter ablation techniques used, and comparisons made. The trials addressed 3 distinct indications for catheter ablation: (1) patients...
with paroxysmal AF, as a first-line treatment option (1 trial20); (2) patients with symptomatic paroxysmal or persistent AF who had failed treatment with antiarrhythmic drugs (4 trials15,17-19); and (3) patients with symptomatic AF and heart failure who had failed treatment with standard medications for rate control and who would otherwise be considered for atrioventricular (AV) nodal ablation and pacemaker insertion (1 trial16).

All 6 trials reported that maintenance of sinus rhythm was improved for the catheter ablation group. Recurrence rates of AF at 1 year ranged from 11% to 44% for the catheter ablation groups compared with 63% to 96% for the medication groups. Four of the 6 trials reported on QOL outcomes. One of these only reported within-group comparisons, as opposed to between-group comparisons.17 The other 3 trials reported improvements in QOL associated with catheter ablation.15,16,20 None of the available trials reported meaningful data on cardiovascular morbidity and mortality associated with AF. The Assessment concluded that catheter radiofrequency ablation (RFA) is more effective than medications in maintaining sinus rhythm across a wide spectrum of patients with AF and different variations of catheter ablation. The evidence on QOL is suggestive, but not definitive, of a benefit for patients undergoing catheter ablation. For other outcomes, the evidence did not permit conclusions. Based on these findings, TEC criteria were met for 2 indications: patients with symptomatic paroxysmal or persistent AF who have failed treatment with antiarrhythmic drugs and patients with symptomatic AF and heart failure who have failed treatment with standard medications for rate control and who would otherwise be considered for AV nodal ablation and pacemaker insertion. For the first indication, the conclusion followed from the premise that reducing episodes of recurrent AF for this population will reduce or eliminate the symptoms associated with episodes of AF. For the other indication, the single multicenter RCT available was judged sufficient to conclude that catheter ablation improved outcomes compared with the alternative, AV nodal ablation and pacemaker insertion. While this trial was relatively small, it was judged to be otherwise of high quality and reported improvements of a relatively large magnitude across a range of clinically important outcome measures, including QOL, exercise tolerance, left ventricular ejection fraction (LVEF), and maintenance of sinus rhythm.

Since the publication of the TEC Assessment, additional systematic reviews and meta-analyses of catheter ablation for AF have been reported.

Nyong et al (2016) reported on a Cochrane review of ablation for individuals with nonparoxysmal AF, which included RCTs comparing radiofrequency catheter or surgical ablation with antiarrhythmic drugs for persistent or long-standing persistent AF.21 Reviewers selected 3 RCTs (total N=261 subjects; Forleo et al [2009],22 Stabile et al [2006],19 and Mont et al [2014]23 not discussed in detail herein), all comparing catheter RFA (n=159) to antiarrhythmic drugs (n=102) at 12 months. The trials were assessed to have a low or unclear risk of bias. Reviewers’ primary outcomes are summarized in Table 1.
Table 1. Efficacy of Catheter Ablation for Nonparoxysmal Atrial Fibrillation

<table>
<thead>
<tr>
<th>Outcome (Catheter vs Drug Therapy)</th>
<th>No. of Participants (Studies)</th>
<th>Evidence Quality</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freedom from atrial arrhythmias or recurrence of any atrial arrhythmias</td>
<td>261 (3 studies)</td>
<td>Low</td>
<td>1.84</td>
<td>1.17 to 2.88</td>
</tr>
<tr>
<td>Need for cardioversion</td>
<td>261 (3 studies)</td>
<td>Moderate</td>
<td>0.62</td>
<td>0.47 to 0.82</td>
</tr>
<tr>
<td>Cardiac hospitalization</td>
<td>216 (2 studies)</td>
<td>Low</td>
<td>0.28</td>
<td>0.1 to 0.72</td>
</tr>
</tbody>
</table>

Adapted from Nyong et al (2016).21
CI: confidence interval; RR: relative risk.
^a Assessed using the GRADE assessment tool.

Overall, reviewers concluded that catheter RFA was superior to antiarrhythmic drugs for patients who had not responded to antiarrhythmic drug therapy, but there was uncertainty related to their findings.

Vaidya et al (2015) reported on results of a systematic review and meta-analysis of RCTs comparing pulmonary vein isolation, pharmacologic rate control, and AV junction ablation plus pacemaker insertion for AF.24 Subgroup analyses focused on patients with congestive heart failure. Reviewers identified 7 RCTs, 2 comparing AV junction ablation plus pacemaker insertion with pharmacologic rate control, 1 comparing AV junction ablation plus pacemaker insertion with pharmacologic rate control and pacemaker insertion, 1 comparing pulmonary vein isolation with AV junction ablation plus biventricular pacing, and 3 comparing pulmonary vein isolation with pharmacologic rate control. Sample sizes ranged from 36 to 99 patients, with 425 patients across the 7 studies. When pulmonary vein isolation was compared with pharmacologic rate control, based on 3 RCTs, pulmonary vein isolation–treated patients had higher increases in LVEF (weighted mean difference [WMD], +6.5; 95% confidence interval [CI], 0.6 to 12.5; p=0.03). When pulmonary vein isolation was compared with AV junction ablation plus pacemaker insertion, based on 1 RCT, pulmonary vein isolation–treated patients had higher increases in LVEF (WMD = +9.0; 95% CI, 6.3 to 11.7; p<0.01). Patients treated with pulmonary vein isolation had greater reductions in heart failure symptoms, measured by the Minnesota Living with Heart Failure Questionnaire compared with pharmacologic rate control, in 3 RCTs that included only patients with congestive heart failure (WMD = -11.0; 95% CI, -19.4 to -2.6; p=0.01). Minnesota Living with Heart Failure Questionnaire scores also improved when pulmonary vein isolation was compared with AV junction ablation plus pacemaker insertion.

Shi et al (2015) reported on the results of a meta-analysis of RCTs comparing catheter ablation with antiarrhythmic drug therapy for AF.25 The meta-analysis included 11 trials (total N=1763 patients), of which 4 included only patients with paroxysmal AF, 2 included only patients with persistent AF, and 5 included patients with paroxysmal or persistent AF. Eight RCTs included only patients who were drug-refractory or drug-intolerant, and the remaining three included patients treated with catheter ablation as first-line therapy. Catheter ablation–treated patients had lower rates of AF recurrence than antiarrhythmic drug therapy–treated patients (relative risk [RR], 0.47; 95% CI, 0.38 to 0.58; p<0.001; \(I^2=62\%\), p=0.003).
A Cochrane review by Chen et al (2012) evaluated catheter ablation for paroxysmal and persistent AF. It included 7 RCTs comparing catheter ablation with medical therapy. Reviewers’ main conclusions were that catheter ablation was superior at reducing the recurrence of AF (RR=0.27; 95% CI, 0.18 to 0.41), but that there were no differences in mortality rates (RR=0.50; 95% CI, 0.04 to 5.65), embolic complications (RR=1.01; 95% CI, 0.18 to 5.68), or death from thromboembolism (RR=3.04; 95% CI, 0.13 to 73.4).

Ganesan et al (2013) published results of a systematic review and meta-analysis of studies reporting long-term outcomes after percutaneous catheter ablation for paroxysmal and nonparoxysmal AF. Reviewers included 19 studies (RCTs, case-control and cohort studies, case series) that reported catheter ablation outcomes at 3 years or more after the index ablation procedures. Sample sizes in these studies ranged from 39 to 1404 patients (total N=6167 patients). For a single procedure, the pooled overall success rate at 12 months postprocedure was 64.2% (95% CI, 57.5% to 70.3%). At late follow-up, the overall single-procedure success, defined as freedom from atrial arrhythmia at latest follow-up, was 53.1% (95% CI, 46.2% to 60.0%). The pooled overall multiple-procedure long-term success rate was 79.8% (95% CI, 75.0% to 83.8%). The analysis did not identify any predictors of short- or long-term recurrence. Reporting of periprocedural complications was heterogeneous across studies, but complication rates were generally low.

Earlier systematic reviews and meta-analyses (2008, 2009) comparing RFA with antiarrhythmic drug therapy for AF have reported improved rates of freedom from arrhythmias with catheter ablation.

Other systematic reviews have assessed the effect of RFA on specific AF-related outcomes. Zhuang et al (2014) conducted a meta-analysis that evaluated the effect of RFA on left atrial volume and function in patients with AF. In a summary of data from 26 studies enrolling 1821 patients, RFA was associated in improvements in left atrial volume measurements compared with preablation (eg, for left atrial diameter); the WMD was -1.52 mm (95% CI, -2.57 to -0.47 mm). There were no significant improvements in left atrial function.

Randomized Controlled Trials

Since the TEC Assessment, additional RCTs comparing RFA with pharmacologic treatment have been identified. Wilber et al (2010) enrolled 167 patients who had failed at least 1 antiarrhythmic medication and had at least 3 AF episodes in the prior 6 months. Patients were randomized to catheter ablation or continued drug therapy and followed for 9 months. At the end of follow-up, 66% of patients in the ablation group were free of recurrent AF compared with 16% of patients in the medication group. Adverse events related to treatment occurred in 4.9% (5/103) of patients treated with ablation and in 8.8% (5/57) of patients treated with medications.
Forleo et al (2009) randomized 70 patients with type 2 diabetes and paroxysmal or persistent AF to RFA or an antiarrhythmic medication. Follow-up was for 1 year, with the primary outcome of recurrence of AF. At the end of the trial, 42.9% (15/35) of patients in the medication group were free of AF compared with 80% (28/35) of patients in the ablation group. QOL also improved significantly for patients in the ablation group. Adverse events from medications occurred more frequently (17.2% [6/35]) than complications from ablation (2.9% [1/35]).

Mont et al (2014) conducted an RCT comparing catheter RFA with antiarrhythmic drug therapy among 146 patients with symptomatic persistent AF. Patients were randomized in a 2:1 fashion to catheter RFA (n=98) or antiarrhythmic drug therapy (n=48). Although the trial was terminated before the planned sample size of 208 was enrolled (due to low enrollment), at 12 months of follow-up, the proportion of patients who were free of sustained AF episodes was higher in the catheter ablation group (70.4%) than in the antiarrhythmic drug therapy group (43.7%; p=0.002). QOL scores did not differ significantly between groups. Longer term outcomes were not reported.

Marrouche et al (2018) conducted an RCT comparing catheter ablation with medical therapy in 363 patients with systematic paroxysmal or persistent AF who had no response to, were unwilling to take, or had unacceptable side effects to antiarrhythmic drugs. Patients were randomized to catheter ablation (n=179) or medical therapy (n=184), with a median follow-up of 38 months. For patients treated with catheter ablation, there was a significantly lower rate of death from cardiac causes (20 [11.2%] vs 41 [22.3%]; hazard ratio [HR], 0.49; 95% CI, 0.29 to 0.84; p=0.009) or hospitalization for worsening heart failure (37 [20.7%] vs 66 [35.9%]; HR=0.56; 95% CI, 0.37 to 0.83; p=0.004) than found in patients treated with medical therapy alone.

RFA as First-Line Therapy for AF
Since the 2008 TEC Assessment, which found the evidence insufficient to support the use of catheter ablation as first-line therapy for individuals with paroxysmal AF, the evidence has continued to evolve.

Systematic Reviews
Hakalathi et al (2015) reported on a systematic review and meta-analysis of RCTs comparing RFA with antiarrhythmic drug therapy as first-line therapy for symptomatic AF. They selected 3 trials (total N=491 patients), including the RAAFT-2 (2014) and MANTRA-PAF (2012) trials (described below) and the earlier RAAFT-1 trial. RAAFT-2 and MANTRA-PAF were considered to be at low risk of bias. RFA was associated with lower risk of recurrence of AF (RR=0.63; 95% CI, 0.44 to 0.92; p=0.02; I^2=38%).

Randomized Controlled Trials
RAAFT-2
Morillo et al (2014) published results of the RAAFT-2 trial, an RCT comparing RFA with antiarrhythmic drug therapy as a first-line therapy for paroxysmal AF. Eligible patients had symptomatic recurrent paroxysmal AF lasting more than 30
seconds, with 4 or fewer episodes in the prior 6 months, and had had no previous antiarrhythmic drug treatment. The trial enrolled 127 patients at 16 centers; 66 were randomized to RFA and 61 to antiarrhythmic drug therapy, at the discretion of the treating physician. In the RFA group, 63 underwent ablation; during follow-up, 9 underwent reablation and 6 crossed over to receive antiarrhythmic drug therapy. In the drug therapy group, 26 crossed over to undergo ablation and 24 discontinued antiarrhythmic drug therapy but continued in the trial. Analysis was intention-to-treat (ITT). Patients were followed with biweekly scheduled transtelephonic monitor recordings and symptomatic recordings through the 24-month follow-up period. The trial’s primary outcome (recurrence of any atrial tachyarrhythmia lasting >30 seconds) occurred in 72.1% (n=44) in the antiarrhythmic drug group compared with 54.5% (n=36) in the ablation group (HR=0.56; 95% CI, 0.35 to 0.90; p=0.02). Fewer patients in the RFA group had recurrence of symptomatic AF, atrial flutter, or atrial tachycardia (47% vs 59%; HR=0.56; 95% CI, 0.33 to 0.95; p=0.03) or recurrence of symptomatic AF (41% vs 57%; HR=0.52; 95% CI, 0.3 to 0.89; p=0.02). QOL measures did not differ significantly between groups.

MANTRA-PAF
An earlier RCT (MANTRA-PAF) evaluated RFA as the initial therapy for paroxysmal AF was reported by Cosedis Nielsen et al (2012). A total of 294 patients were randomized to initial treatment with catheter ablation or to pharmacologic therapy. Patients were followed to 24 months for the primary outcomes of burden of AF (percentage of time in AF on a Holter monitor) at each time point and cumulative burden of AF over all time points. For individual time points, the burden of AF was lower in the catheter RFA group only at 24 months (9% vs 18%, p=0.007). The 90th percentile cumulative burden did not differ significantly between groups (13% vs 19%; p=0.10). The secondary outcome of a percentage of patients free from AF at 24 months was greater for the catheter ablation group (85% vs 71%, p=0.004), as was the secondary outcome of freedom from symptomatic AF (93% vs 84%, p=0.01). There was 1 death in the ablation group (due to a procedural-related stroke), and 3 patients in that group developed cardiac tamponade following the procedure.

Five-year follow-up from MANTRA-PAF was reported by Nielsen et al (2017). Follow-up was available for 245 (83%) of 294 patients, of whom 227 had Holter recordings. The randomized groups did not differ significantly in terms their availability for follow-up. On ITT analysis, significantly more patients in the RFA group were free from any AF (126/146 [86%]) than those in the pharmacologic therapy group (105/148 [71%]; RR=0.82; 95% CI, 0.73 to 0.93; p=0.001). Symptomatic AF burden was also significantly lower in the RFA group, although QOL was not.

Section Summary: RFA as First-Line Therapy for AF
Multiple RCTs demonstrated lower rates of AF burden in patients with symptomatic paroxysmal AF who underwent catheter ablation as an initial treatment strategy. Rates of adverse events were relatively low.
RFA for AF in the Setting of Heart Failure
Based on 1 multicenter RCT, the 2008 TEC Assessment found the evidence was sufficient to conclude that catheter ablation improved outcomes for a patient with AF and heart failure compared with the alternative, AV nodal ablation, and pacemaker insertion. More recent RCTs and multiple observational studies have compared catheter ablation with medical therapy for AF in the setting of heart failure.

Systematic Reviews
Zhu et al (2016) reported on a systematic review and meta-analysis of RCTs comparing catheter ablation with medical rate control in patients who had persistent AF and heart failure. Three trials (total N=143 subjects; range, 41-52 subjects) met reviewers’ inclusion criteria, all of which used blinded outcome assessment and were considered to have low risk of bias. For the meta-analysis’s primary end point, compared with medical rate control, catheter ablation was associated with larger improvements in left ventricular end-diastolic fraction (mean difference, 6.22%; 95% CI, 0.7% to 11.74%; \(I^2 = 63\% \)). Measures of peak oxygen capacity, New York Heart Association functional class, and QOL scores were also significantly improved in the catheter RFA-treated groups.

In that same year, Anselmino et al (2016) reported on a systematic review of available observational studies and RCTs evaluating catheter ablation for AF in patients with chronic heart failure or structural cardiomyopathies. For the population of patients with chronic heart failure, reviewers identified 17 observational studies, 4 RCTs, and 4 meta-analyses. Among the 4 RCTs, one compared catheter ablation with AV node ablation plus biventricular pacemaker insertion and the others compared catheter ablation with optimal medical therapy plus rate control. In the pooled analysis, the mean efficacy of catheter ablation in maintaining sinus rhythm was 59% after a single procedure, increasing to 77% after a repeat procedure.

Randomized Controlled Trials
Two RCTs comparing RFA with medical rate control are described next. While these trials did not directly provide evidence on the use of catheter ablation as an alternative to AV nodal ablation in patients who had failed rate control, they did support use of catheter ablation to treat AF in this population.

Hunter et al (2014) conducted an RCT comparing catheter RFA with medical rate control for patients who had persistent AF and symptomatic heart failure, with adequate rate control at the time of enrollment. There was no requirement for patients to have failed antiarrhythmic drug therapy. The trial’s primary end point was the difference between groups in LVEF at 6 months postprocedure. Fifty patients were randomized, 26 to catheter ablation and 24 to medical management. At 6 months, 81% of the catheter ablation group was free from recurrent AF and antiarrhythmic drugs. LVEF at 6 months postprocedure was 40% in the catheter ablation group compared with 31% (p=0.015) in the medical management group. Catheter ablation was also associated with improvements in health-related QOL.
Jones et al (2013) reported on results from an RCT comparing catheter ablation with medical rate control for patients who had symptomatic heart failure, an LVEF of 35% or less, and persistent AF.41 Fifty-two patients were randomized, 26 each to catheter ablation or medical rate control. At 12 months postprocedure, sinus rhythm was maintained in 88% of the catheter ablation group, with a single-procedure success rate of 68%. For the trial’s primary outcome (peak oxygen consumption at 12 months postprocedure), there was a significant increase in peak consumption in the catheter ablation group (2.13 mL/kg/min) compared with a decrease in the medical management group (-0.94 mL/kg/min; mean difference, +3.07 mL/kg/min; 95% CI, 0.56 to 5.59 mL/kg/min; p=0.018).

Observational Studies

Geng et al (2017) performed a retrospective cohort study on patients with AF, and heart failure.42 Patients treated with catheter ablation (n = 90) were compared with those treated with rate control therapy (n=304), with a mean follow-up of 13.5 months. Patients treated with catheter ablation had improvement in AF freedom (82.2% vs 0%). They also had a significantly lowered risk of major adverse cardiac events (13.3% vs 29.3%; HR=0.51; 95% CI, 0.26 to 0.98; p=0.044), defined as a composite score of all-cause mortality, stroke, and unplanned hospitalization. Study limitations included lack of details on selection criteria and differences in baseline criteria between groups (ie, age, symptoms).

Joy et al (2017) retrospectively reviewed the 2013 Nationwide Readmissions Database to examine readmissions for heart failure exacerbations.43 Based on the 885,270 admissions for heart failure exacerbation, 90-day readmission rates were significantly higher in the 364,337 patients with heart failure with coexisting AF (41.4%) than in those without AF (37.6%; p<0.001). Treatment by catheter ablation was associated with a lower rate and length of stay for readmission due to heart failure exacerbation, compared with those without discharged without ablation (27.5% vs 41.4%, p<0.001; 5.58 days vs 6.60 days, p=0.031, respectively). The study was limited to information collected in the database, which focused on hospital data, and did not capture outcomes after discharge; also, it was not possible to compare baseline characteristics between patients who did or did not receive catheter ablation.

Section Summary: RFA for AF in the Setting of Heart Failure

Evidence from systematic reviews, RCTs, and an observational study have suggested that catheter ablation improves heart failure outcomes for patients with heart failure and coexisting AF.

Comparisons of RFA Techniques

Techniques for RFA for pulmonary vein isolation or substrate ablation have evolved. Specifying RFA techniques is not the focus of the present review, but recent large studies are described briefly.

Reddy et al (2015) reported on the results of a noninferiority RCT comparing a contact force-sensing RFA catheter with a standard (noncontact force-sensing) catheter in 300 patients with treatment-refractory paroxysmal AF.44 The trial’s
primary effectiveness end point was a composite of acute ablation success and long-term ablation success (freedom from symptomatic AF, atrial tachycardia, or atrial flutter at 12 months off antiarrhythmic drugs, after a 3-month blanking period). In the modified ITT population, patients in the contact force-sensing catheter group (n=149) were noninferior to the control catheter group (n=141; 67.8% vs 69.4%, respectively; absolute difference, -1.6%; lower limit of 1-sided 95% CI; -10.7; p=0.007 for noninferiority).

A second, smaller RCT, published by Nakamura et al (2015), compared a contact force-sensing RFA catheter with a standard catheter (N=120), and reported lower rates of pulmonary vein reconnections in those treated with a contact force-sensing catheter.45

Afzal et al (2015) performed a systematic review and meta-analysis, which included 9 studies (1 RCT [but not the Reddy RCT]), comparing RFA with contact force-sensing or noncontact force-sensing catheters.46 At 12-month follow-up, contact force-sensing catheter-treated patients had lower AF recurrence compared with standard catheter-treated patients (RR=0.63; 95% CI, 0.44 to 0.91; p=0.01).

Longer Term Outcomes
The available RCTs have mainly reported on short-term outcomes (>1 year) and, therefore, do not provide data on the rate recurrences after 1 year. Longer term outcomes have been reported and have generally found rates of early recurrence in the range of 20% to 30%, requiring repeat ablations. Rates of longer term recurrence are lower if early recurrence does not occur, in the range of 1% to 2% per year.

Hussein et al (2011) reported on 831 patients treated in 2005 (median follow-up, 55 months).47 During the first year after ablation, 23.8% had a recurrence of AF. During the remaining follow-up, recurrences occurred in 8.9% additional patients. The overall rate free of arrhythmia and medications was 79.4% at 55 months. An additional 10.5% of patients were arrhythmia-free on medication, for a total clinical improvement rate of 89.9%. In a smaller study (N=509) with a follow-up to 5 years after initial ablation, Teunissen et al (2016) reported that, after a single procedure, 41.3% of patients had long-term maintenance of sinus rhythm.48

Bunch et al (2013) reported on results from a prospective cohort study comparing the risk of stroke among patients with AF who had undergone catheter ablation, patients with AF who had not had ablation, and patients without a history of AF.49 A total of 4212 patients with AF who had had catheter ablation were age- and sex-matched at a 1:4 ratio with 16,848 subjects in each of the other groups. Mean follow-up time was 3.9 years. At 1 year postprocedure, significantly more patients with AF who had not undergone ablation had a stroke (3.5%) than those with AF who had had ablation (1.4%) or had no history of AF (1.4%; p<0.001 for trend). During the follow-up period, for all ages and CHADS2 profiles, patients with AF who had ablation had a lower stroke risk than those with AF who had not.
Several smaller studies have also reported longer term follow-up after catheter RFA. Weerasooriya et al (2011) reported on 5-year follow-up in 100 patients treated with catheter ablation. Recurrences were most common within the first 6 months, with repeat procedures being common during that period. At 1, 2, and 5 years after ablation, arrhythmia-free survival rates were 87%, 81%, and 63%, respectively. Tzou et al (2010) reported on long-term follow-up for 123 patients who had a previous successful ablation, defined as free of AF at 1 year. At 3-year follow-up, 85% of patients were still free of AF and off all medications; at 5 years, 71% remained free of AF. The authors estimated a late recurrence rate of 7% per year for patients with an initially successful procedure. In a similar study, Bertaglia et al (2010) reported on outcomes after 6 years of follow-up for 229 patients who had had a single, successful ablation. At 1-year follow-up, 77% (177/229) of patients were free of AF and off all medications. After a mean additional follow-up of 49.7 months for these 177 patients, 58% remained free of AF. Sawhney et al (2009) reported on 5-year success rates for 71 patients who underwent ablation in 2002 or 2003. Freedom from symptomatic AF while off medications was achieved in 86% of patients at 1 year, in 79% at 2 years, and in 56% at 5 years. A substantial minority of patients (22.5%) had a recurrence at points more than 2 years after ablation. A study by Anselmino et al (2013) followed 196 patients who underwent catheter RFA for paroxysmal or persistent AF and had an LVEF of 50% or less for a mean of 46.2 months. During follow-up, 29.6% of patients required repeat ablation procedures. At the end of follow-up, 37.8% had had at least 1 episode of AF, atrial flutter, or ectopic atrial tachycardia. Takigawa et al (2014) reported on long-term follow-up for 1220 patients who underwent RFA for symptomatic paroxysmal AF. AF recurrence-free survival probabilities at 5 years were 59.4% after the initial procedure and 81.1% after the final ablation procedure (average procedures per patient, 1.3).

Section Summary: Radiofrequency Ablation for AF
Numerous RCTs of RFA for isolation of the pulmonary veins vs medical management have reported that freedom from AF at 1 year is higher with RFA than with medical management. The trials mainly included patients who failed antiarrhythmic medications. These trials have reported that most patients undergoing RFA were free of AF at 1 year. QOL was also improved in these trials for patients undergoing catheter ablation. A smaller number of studies have evaluated outcomes longer than 1 year and reported that late recurrences occur up to 5 years, but were uncommon after the first year. Complications from RFA were reported at low rates in the RCTs, but the numbers of patients in these trials are too small to accurately estimate rates of uncommon events. Two RCTs have evaluated the use of catheter ablation as an initial strategy for paroxysmal AF; 1 RCT demonstrated reduced rates of AF recurrence, while the other reported reduced cumulative overall AF burden.

Cryoablation for AF
Earlier studies assessing outcomes after cryoablation for AF were mainly case series and cohort studies reporting success rates similar to those reported for RFA. Since 2013, several RCTs have compared cryoablation with medical therapy or RFA.
Systematic Reviews
Following the publication of the large FIRE AND ICE trial in 2016 (see the Randomized Controlled Trials section below), a large number of systematic reviews comparing cryoablation with RFA for AF have been published. We identified 4 systematic reviews, which varied in inclusion criteria, primary outcomes, and designs, and are summarized in Table 2. Despite their differences, these reviews have generally reported that efficacy outcomes are comparable between the procedures, while the specific types of complications differed.

Table 2. Systematic Reviews Comparing Cryoablation With RFA for AF

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>No. of Studies Included (Participants)</th>
<th>Main Outcomes</th>
<th>Relative Effect</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al (2017)</td>
<td>Paroxysmal AF</td>
<td>9 RCTs, 29 non-RCTs (n=6218 cryoablation, n=9278 RFA)</td>
<td>Total complication (cryoablation vs RFA)</td>
<td>OR=1.37</td>
<td>1.19 to 1.57</td>
</tr>
<tr>
<td>Liu et al (2016)</td>
<td>AF, refractory to medication</td>
<td>27 prospective (13 RCTs, 14 non-RCTs), 13 retrospective (N=11,395)</td>
<td>AF recurrence (cryoablation vs RFA)</td>
<td>RR=0.82</td>
<td>0.70 to 0.96</td>
</tr>
<tr>
<td>Cardoso et al (2016)</td>
<td>AF, with follow-up >12 mo</td>
<td>5 RCTs, 17 non-RCTs (n=3706 cryoablation, n=4962 RFA)</td>
<td>Freedom from recurrent atrial tachyarrhythmia at ≥12 mo (cryoablation vs RFA)</td>
<td>OR=1.12</td>
<td>0.97 to 1.29</td>
</tr>
<tr>
<td>Buiatti et al (2017)</td>
<td>Paroxysmal AF</td>
<td>3 RCTs, 2 multicenter cohort studies, 5 single-center prospective studies (n=2232 cryoablation, n=4241 RFA)</td>
<td>Recurrence of any atrial arrhythmia (cryoablation vs RFA)</td>
<td>RR=1.01</td>
<td>0.90 to 1.14</td>
</tr>
</tbody>
</table>

AF: atrial fibrillation; CI: confidence interval; OR: odds ratio; RCT: randomized controlled trial; RFA: radiofrequency ablation; RR: relative risk.

Cheng et al (2015) reported on a meta-analysis of RCTs and observational studies comparing cryoablation with RFA for AF. The meta-analysis included 11 studies (3 RCTs, 11 observational studies) with a total of 1216 patients. One RCT included only patients undergoing repeat treatment after an initially failed ablation procedure. In the pooled analysis, 66.9% of those treated with cryoablation and 65.1% of those treated with RFA were free of AF after a mean follow-up of 16.5 months (RR=1.01; 95% CI, 0.94 to 1.07; p=0.87; I²=5%, p=0.39).

Earlier systematic reviews comparing cryoablation with RFA included varying numbers of RCTs and observational studies and reporting findings similar to those of more recent systematic reviews. 63,64

Randomized Controlled Trials
Cryoablation vs Medical Therapy
Packer et al (2013) reported on results of the STOP AF trial, an RCT comparing cryoablation with antiarrhythmic medications.65 This trial enrolled 245 patients with paroxysmal AF who had failed at least 1 (median, 1.2) membrane-active antiarrhythmic medications. Patients were randomized in a 2:1 fashion to cryoablation (n=163) or drug therapy (n=82). At 1-year follow-up, 69.9% of patients in the ablation group were free of AF vs 7.3% in the medication group. The single-procedure success rate was 57.7%. There was also a significantly greater reduction in symptoms for the ablation group. Seventy-nine percent of the drug treatment group crossed over to cryoablation during the 12-month follow-up because of recurrent, persistent AF. Cryoablation procedure-related adverse events occurred in 5 (3.1%) patients; major AF events occurred in 3.1% of the cryoablation group compared with 8.5% of the drug treatment group (p<0.001 for noninferiority). Phrenic nerve injury occurred at a rate of 13.5%, of which 86% resolved at 12 months.

Andrade et al (2014) published a follow-up analysis of the STOP AF trial to evaluate the incidence and significance of early recurrence of AF after ablation.66 Of the 163 subjects randomized to cryoablation, 84 (51.5%) patients experienced early recurrence of AF, defined as any recurrence of AF lasting more than 30 seconds between 3 and 12 months postablation. The presence of early AF recurrence was associated with late AF recurrence: late AF recurrence occurred in 41 (25.1%) patients and was more likely in those with early recurrence (55.6% in those with early recurrence vs 12.7% in those without early recurrence; p<0.001).

Cryoablation vs RFA
Kuck et al (2016) reported on the results of the FIRE AND ICE trial, a multicenter RCT with a noninferiority design and blinded end point assessment, which compared RFA with cryoablation in individuals who had symptomatic, treatment-refractory paroxysmal AF.67 The trial enrolled 769 patients, of whom 750 were randomized and included in a modified ITT analysis (n=376 in the RFA group, n=374 in the cryoablation group). The trial tested the hypothesis that the cryoballoon would be noninferior to RFA regarding a prespecified efficacy end point, which was the time to the first documented clinical failure occurring more than 90 days after the index ablation period (blanking period). The trial defined clinical failure as recurrence of AF or occurrence of atrial flutter or atrial tachycardia on electrocardiographic or 24-hour Holter monitoring, prescription of class I or III antiarrhythmic drugs, or repeat ablation. After 90 days, the primary efficacy end point occurred in 138 cryoablation patients and 143 RFA patients (1-year Kaplan-Meier event rate estimates, 34.6% and 35.9%, respectively; HR=0.96; 95% CI, 0.76 to 1.22; p<0.001 for noninferiority). Cryoablation patients had shorter total procedure time (124 minutes vs 141 minutes, p<0.001) and left atrial dwell time (92 minutes vs 109 minutes, p<0.001), but longer fluoroscopy time (22 minutes vs 17 minutes, p<0.001). The trial’s primary safety end point (a composite of death from any cause, stroke or transient ischemic attack (TIA) from any cause, and serious adverse events) occurred in 40 patients in the cryoablation group and 51 patients in the RFA group (1-year Kaplan-Meier event rate estimates, 10.2% and 12.8%, respectively; HR=0.78; 95% CI, 0.52 to 1.18;
p=0.024). In the cryoablation group, phrenic nerve injury was the most common adverse event reported (2.7%).

Kuck et al (2016) also reported on rehospitalization, repeat ablation, and QOL outcomes during 1000 days of follow-up. The cryoablation group had fewer hospitalizations (122 patients) than the RFA group (156 patients; HR=0.72; 95% CI, 0.57 to 0.91; p=0.01). In addition, they had fewer repeat ablations (44 patients vs 66 patients; HR=0.65; 95% CI, 0.45 to 0.95; p=0.03). Patients in both groups had improvements in QOL scores from preablation through 12 months postablation, but there were no significant differences in change in QOL between groups.

Luik et al (2015) reported on results of the FreezeAF study, an RCT with a noninferiority design that compared RFA using an irrigated catheter with cryoablation in individuals who had treatment-refractory paroxysmal AF. The trial included 315 patients with paroxysmal AF refractory to treatment with at least 1 antiarrhythmic drug, who were randomized to RFA (n=159) or cryoablation (n=156). The trial tested the null hypothesis that cryoablation was noninferior to RFA regarding a coprimary end point: the absence of AF in combination with the absence of persistent complications at 6- and 12-month follow-ups. The coprimary end point was reached in 63.1% and 64.1% of the RFA and cryoablation groups, respectively, at 6 months, and in and 73.6% and 73% of the RFA and cryoablation groups, respectively, at 12 months. At 12 months postablation, the null hypothesis was rejected (null hypothesis risk difference, ≤ -0.15; risk difference, 0.029; 95% CI, -0.074 to 0.132; p<0.001).

An additional RCT by Hunter et al (2015) compared point-by-point RFA with cryoablation, but in 1 comparison group pulmonary vein isolation could be achieved with RFA if cryoablation was unsuccessful, and in the second comparison group a hybrid procedure (cryoablation following RFA) was used, which makes isolating the relative efficacy of cryoablation difficult.

The Mesh Ablator versus Cryoballoon Pulmonary Vein Ablation of Symptomatic Paroxysmal AF (MACPAF) study was a single-center RCT comparing cryoablation with RFA using the HD Mesh Ablator Catheter for AF. The HD Mesh Ablator Catheter, which is not cleared for use in the United States, is a multielectrode RFA catheter that uses a mesh electrode to deliver radiofrequency energy to multiple points of contact. Primary short-term results for MACPAF were reported by Koch et al (2012). The trial randomized symptomatic paroxysmal AF to catheter ablation with the Arctic Front cryoablation catheter or the HD Mesh Ablator Catheter. The trial’s primary end point was complete isolation of the pulmonary veins at the end of the procedure. Enrollment was initially planned for 108 patients with symptomatic paroxysmal AF inadequately controlled using antiarrhythmic drug treatment. However, at interim analysis, the HD Mesh Ablator demonstrated a lack of efficacy for the primary end point and the trial’s data safety monitoring board terminated the trial early. Forty-four patients with drug-resistant paroxysmal AF had been randomized at trial termination and comprised the ITT analysis cohort. The per-protocol analysis cohort included 32 patients. Three patients withdrew...
before the catheter procedure; 9 other patients were excluded from analysis due to use of a noncompliant catheter (n=2), identification of a trigger arrhythmia, which was subsequently ablated (n=1), failure of transseptal puncture (n=1), or ablation occurring after the interim analysis (n=5). The primary end point, by ITT analysis (complete pulmonary vein isolation), was achieved by 13 (56.5%) of 23 patients in the cryoablation group compared with 2 (9.5%) of 21 patients in the mesh ablator group (p=0.001). In the per-protocol cryoablation group, 76.5% of subjects had complete pulmonary vein isolation. Major complications included 1 case of retroperitoneal hematoma in the cryoablation group and 1 case of pericardial tamponade requiring drainage in the mesh ablator group.

Malmborg et al (2013) reported on results from an RCT comparing cryoablation using the Arctic Front cryoballoon catheter with RFA using the Pulmonary Vein Ablation Catheter. One hundred ten patients with paroxysmal or persistent AF were randomized, 54 to cryoablation and 56 to RFA. Complete pulmonary vein isolation was achieved in 98% of the cryoablation group compared with 93% of the RFA group (p=0.37). At 6-month follow-up, freedom from AF (absence of symptoms and no AF episodes on 7-day Holter monitoring or 12-lead electrocardiogram) without antiarrhythmic drug treatment was achieved in 52% of the cryoablation group and 38% of the RFA group (p=0.13).

Nonrandomized Studies

Case series of cryoablation published before the RCTs discussed above have reported success rates similar to those reported for RFA. A prospective noncomparative interventional study by Neumann et al (2008) evaluated cryoablation in 346 patients; 74% of patients with paroxysmal AF, but only 42% of those with persistent AF, were free from AF at 12-month follow-up. A small analysis by Linhart et al (2009) compared 20 patients undergoing cryoablation with 20 patients undergoing RFA, matched for age, sex, LVEF, and AF history. There were no significant differences between groups, including freedom from AF at 6 months, which was 55% in the cryoablation group and 45% in the RFA group.

Abugattas et al (2017) performed a multicenter retrospective study of patients with paroxysmal AF who underwent cryoballoon ablation. Patients who were at least 75 years old (n=53) were compared with younger patients (n=106), with a mean follow-up of 14 months. After procedure completion, 84% of all patients reported resolution of atrial arrhythmic events. There were no significant differences in the success rates between groups, but older patients had more recurrences (15%) than younger patients (5%; p=0.03). The most common complication was transient phrenic nerve palsy; there was no significant difference in its incidence between groups. This study lacked procedural complication monitoring.

In the largest nonrandomized comparative study identified, Aryana et al (2015) compared ablation using a second-generation cryoballoon with RFA in a retrospective cohort of 1196 patients with paroxysmal and persistent AF. Of the overall study population, 76% had paroxysmal AF; 773 were treated with cryoablation and 423 with RFA. Procedural success and complication rates did not
differ significantly between groups. For the study’s primary end point, freedom from AF or atrial flutter or tachycardia at 12 months following a single ablation procedure without the use of antiarrhythmic medications was significantly higher for cryoablation-treated patients (76.6% vs 60.4%, p<0.001).

Another large nonrandomized study by Schmidt et al (2014) used data from a prospective German registry of catheter ablation procedures to compare RFA with cryoablation for paroxysmal AF. The cohort included 905 patients who underwent cryoablation and 2870 patients who underwent RFA, all of whom were enrolled from 2007 to 2011. The 2 groups were generally similar, with the exception that patients who had RFA were significantly more likely to have had valve disease (8.1% vs 3.0%, p<0.001) and an ejection fraction of 40% or less (2.4% vs 1.2%, p<0.05). Rates of acute success were similar for the 2 groups (97.5% for cryoablation vs 97.6% for RFA, p=0.92), as were rates of major procedure-related adverse cardiac and cerebrovascular events (0.4% for cryoablation vs 0.2% for RFA, p=0.15). Overall procedural complication rates were similar (4.6% for each group, p=1.0); the rate of postprocedural phrenic nerve palsy was significantly higher for the cryoablation group (2.1% for cryoablation vs 0% for RFA, p=0.15).

In a subsequent study, Schmidt et al (2016) compared 1-year outcomes for patients treated using RFA with cryoablation in the same German registry described above. This cohort included 2306 patients with symptomatic paroxysmal AF who underwent ablation from 2007 to 2010 (n=607 cryoablation; n=1699 RFA). The groups did not differ significantly in incidence reduction of symptomatic AF at 1 year (77.7% in RFA patients vs 79.5% in cryoablation patients; p=0.42). At 1 year, fewer cryoablation-treated patients were taking an antiarrhythmic drug (27.5% vs 32.1%, p<0.05). Rates of major clinical adverse events did not differ significantly between groups at 1 year, except phrenic nerve paralysis, which was more common in cryoablation patients (1.1% vs 0.3%, p<0.05).

Su et al (2018) performed a multicenter, retrospective study of patients with drug-refractory paroxysmal AF who underwent cryoballoon ablation. The patients (N=452) were successfully treated with pulmonary vein isolation (99%); with transient phrenic nerve injury found to be the most common complication (1.5%). After 12 months, 87% (n=393) of patients had freedom from atrial arrhythmia.

Some studies have compared newer and older generation devices, including 2 nonrandomized studies of cryoablation using a second-generation device with RFA using a contact force-sensing catheter. A smaller nonrandomized study by Julia et al (2015) reported lower rates of atrial tachycardias after cryoablation than after RFA, but with a greater magnitude of effect with cryoablation using a second-generation device. Another smaller nonrandomized study, by Wasserlauf et al (2015), reported shorter procedure times with cryoablation than with RFA, with no significant differences in resolution of AF.
Several studies have also reported on methods to reduce the risk of phrenic nerve injury with cryoballoon ablation, including fluoroscopy of spontaneous breathing and recordings of diaphragmatic electromyograms.

Longer Term Follow-Up
Similar to RFA, the available RCTs for cryoablation have reported primarily on short-term outcomes. Examples of longer term outcomes include Vogt et al (2013), who reported on 605 patients who underwent cryoablation for symptomatic, paroxysmal, or persistent AF. Follow-up data beyond 12 months were available for 451 patients (median follow-up, 30 months). Of those with follow-up available, 278 (61.6%) were free of AF recurrence with no need for repeat procedures after a 3-month blanking period. After 1, 2, and 3 repeat procedures, rates of freedom from AF were 74.9%, 76.2%, and 76.9%, respectively. Phrenic nerve palsy was the most common adverse event, occurring in 2% of patients, all of which resolved within 3 to 9 months. There were 2 periprocedural strokes (1 periprocedural pericardial tamponade, 1 pericardial effusion).

Smaller studies include Neumann et al (2013), who reported on 5-year outcomes after a single cryoablation procedure among 163 patients with symptomatic, drug-refractory paroxysmal AF. Fifty-three percent of subjects were free from recurrent AF, atrial tachycardia, or atrial flutter at 5 years with no additional procedures (after a 3-month blanking period). Boho et al (2015) reported on the follow-up to a median of 3 years after cryoablation for 205 patients with symptomatic paroxysmal or early persistent AF treated at a single institution. At the 6-, 12-, 24-, and 36-month follow-ups, 88%, 71%, 49%, and 31% had no documented recurrence of AF. Davies et al (2016) reported on AF recurrence rates (median follow-up, 56 months) for 200 patients with paroxysmal or persistent AF after cryoablation. During follow-up, 46.7% and 35.6% of those with paroxysmal and persistent AF, respectively, had a recurrence of symptomatic AF after a single procedure.

Section Summary: Cryoablation for AF
The evidence on use cryoablation for AF includes RCTs and numerous nonrandomized studies. The STOP AF trial, which compared cryoablation with antiarrhythmic medication therapy, found cryoablation superior to medical management and rates of freedom from arrhythmia at 1 year in the cryoablation group were in the range reported for RFA. Interpretation of the MACPAF trial is limited by early termination due to the unexpectedly low efficacy of the RFA method used. While the Malmborg study has suggested that cryoablation is comparable to RFA, success in the RFA group was also unusually low. Two RCTs published subsequently found that cryoablation to be noninferior to RFA for pulmonary vein isolation.

Other Ablation Procedures
Most of the currently available research on ablation procedures for pulmonary vein isolation has focused on RFA or cryoablation—but a novel technology called visually guided laser balloon (VGLB) ablation more directly visualizes targeted
atrial tissue during ablation. Other energy sources are under investigation. The CardioFocus Endoscopic Ablation System involves a visually guided balloon that uses laser energy to ablate cardiac tissue.

A prospective RCT by Dukkipati et al (2015) compared the VGLB with RFA in patients with drug-refractory paroxysmal AF. Overall, 342 (170 VGLB, 172 RFA) underwent ablation, and 334 (167 VGLB, 167 RFA) were included in the primary efficacy end point analysis after 12 months of follow-up. The trial's primary efficacy end point was freedom from treatment failure, which included documented symptomatic AF, ablation-induced or unknown origin left atrial flutter or atrial tachycardia, failure to isolate all pulmonary veins, use of any antiarrhythmic drugs, or left heart ablation surgery or implantable cardioverter defibrillator placement for AF. In a prespecified noninferiority analysis, 61.1% of those in the VGLB group met the primary efficacy end point compared with 61.7% of the RFA group (absolute difference, -9.3%; p=0.003 for noninferiority). Overall, rates of primary adverse events did not differ significantly between groups. However, VGLB group patients had a lower rate of pulmonary valve stenosis (0% for VGLB vs 2.9% for RFA, p=0.03), but a higher rate of diaphragmatic paralysis (3.5% for VGLB vs 0.6% for RFA, p=0.05).

Schmidt et al (2017) performed a multicenter RCT comparing the efficacy and safety of the laser balloon with wide area circumferential pulmonary vein isolation using irrigated RFA and 3-dimensional mapping. In total, 134 patients with persistent AF were randomized to treatment with laser balloon catheter ablation (n=68) or RFA (n=66). Follow-up including 3-day Holter monitoring occurred at 3, 6, and 12 months. There were no significant differences in the primary efficacy end point of AF freedom between 3 and 12 months between those treated with laser balloon catheter ablation (71.2%) or those treated with RFA (69.3%).

Repeat Procedures
Repeated procedures for recurrent AF or atrial flutter were commonly performed in most clinical trials included in this evidence review. Of the 10 RCTs reviewed comparing RFA with medical management, only 2 did not include repeated procedures. In the other 5 studies, 1 or more repeated procedures were allowed, and success rates reported generally incorporated the results of up to 3 procedures. In 4 studies reporting these data, repeated procedures were performed in 8.2%, 9%, 20%, and 32% of patients randomized to ablation. In their RCT of catheter ablation of AF in patients with heart failure, Hunter et al (2014) reported that repeat procedures were required in 65.4% of the catheter ablation group. Stabile et al (2006) did not report specifics on how many patients actually underwent repeat procedures, but limited data in the publication suggested that up to 30% of treated patients were eligible for repeat procedures. In the Jais et al (2008) study, patients underwent a mean of 1.8 procedures per patient and a median of 2 procedures per patient, indicating that approximately 50% of patients in the ablation group underwent at least 1 repeated procedure.

Because of this high rate of repeat procedures, the results reported in these studies do not reflect the single-procedure success rate. Rather, they more
accurately estimate the success rate of an ablation strategy that includes repeat procedures for recurrences that occur within the first year of treatment. Nonrandomized evidence has suggested that early reablation increases the success of the procedure when defined as maintenance of sinus rhythm at 1 year. There is variability in the protocol for when repeat procedures should be performed. There is also uncertainty concerning other details of repeat procedures, such as how soon after the initial procedure it should be done, the threshold for AF recurrence that should prompt a repeat, and whether medication regimens should be tried before a repeat procedure.

Pokushalov et al (2013) reported on results of an RCT comparing repeat catheter ablation with antiarrhythmic drug therapy for patients with paroxysmal AF who had failed an initial pulmonary vein isolation procedure. After an initial postablation blanking period, 154 patients with symptomatic AF recurrence were randomized to drug therapy (n=77) or repeat ablation (n=77). Patients were followed for 3 years with an implanted cardiac monitor. At the 3-year follow-up, 58% (45/77) of the repeat ablation group was free from AF or atrial tachycardia and antiarrhythmic drugs compared with 12% (9/77) of the antiarrhythmic therapy group (p<0.01). In the antiarrhythmic drug group, 43 (56%) patients crossed over to receive repeat ablation; in the repeat ablation group, 21 (27%) patients required antiarrhythmic drug therapy. By ITT analysis, 65% (50/77) of the repeat ablation group and 45% (35/77) of the drug therapy group were free from AF or atrial tachycardia (p=0.02).

Complications
Individual clinical trials and case series have reported relatively low rates of complications but may be limited in their ability to detect uncommon outcomes due to small sample sizes. Gupta et al (2013) conducted a systematic review evaluating periprocedural complications following catheter ablation for AF. Reviewers selected 192 studies that included at least 100 participants undergoing catheter ablation for symptomatic AF and that reported complications. The total sample size was 83,236 patients. The overall acute complication rate was 2.9% (95% CI, 2.6% to 3.2%), with significant heterogeneity across studies. The most common complications were vascular complications (1.4%), cardiac tamponade (1.0%), pericardial effusion (0.7%), stroke/TIA (0.6%), and pulmonary vein stenosis (0.5%).

In addition to the complication rates reported in clinical trials and case series, a number of database studies and postmarketing surveillance have reported complications in large numbers of patients. A representative sample of these studies is discussed next, some of which were included in the Gupta review (Shah et al [2012], Dagres et al [2009]).

Waldo et al (2012) reported on the results of a U.S. Food and Drug Administration–directed postmarketing safety study involving 1275 patients from 6 prospective, multicenter studies of RFA using an open-irrigated catheter. A total of 4.9% (63/1275) of patients experienced serious, acute complications within 7 days of the procedure. Vascular access complications were most common, ranging
from 0.5% to 4.7% across the 6 studies. Exacerbations of heart failure occurred in 1.5% of patients, and 2 patients experienced cardiac tamponade. There were no strokes or TIAs reported after the procedure.

Shah et al (2012) used data from a California hospital database to evaluate complications in 4156 patients who underwent catheter ablation for AF. Major complications occurred in 5.1% (211/4156) patients, with approximately half (2.6% [110/4156]) consisting of hemorrhage or hematoma at the vascular entry site. The most common cardiac complication was cardiac perforation and/or tamponade, which occurred in 2.5% (104/4156) of patients. Less common rates of serious adverse events included death (0.02%), stroke/TIA (0.31%), and pneumothorax/hemothorax (0.1%). Factors predictive of complications were female sex, older age, prior hospitalizations for AF, and less hospital expertise with ablation.

In a study of Medicare beneficiaries, Ellis et al (2009) identified 6065 admissions from 168 hospitals in which RFA for AF was performed. The total rate of in-hospital complications was 9.1%, with vascular complications accounting for over half the complications (5.7%). The mortality rate was 0.4%, and 0.6% of patients suffered a stroke or TIA, respectively. Perforation or tamponade occurred in 3.1% of patients and pneumothorax in 0.4%. The presence of chronic obstructive pulmonary disease or unstable angina was associated with a higher risk of complications, while obesity and hyperlipidemia were associated with a lower risk. Age and hospital volume were not significant predictors of risk, but low hospital RFA procedure volume was a significant predictor of in-hospital death.

Complications of catheter ablation were also reported by Dagres et al (2009) in a large cohort of 1000 patients undergoing ablation at a high-volume center in Europe. No deaths were definitively attributed to the procedure, but there were 2 deaths of uncertain cause within the first 30 days following ablation. Overall, 3.9% of patients had a major complication resulting from the procedure. Tamponade was the most serious life-threatening complication (1.3%). Major vascular complications occurred in 1.1%. Thromboembolism, cerebrovascular accident or TIA, atrioesophageal fistula, and endocarditis were all reported complications that occurred at a rate of less than 1%.

Cappato et al (2009) performed a multicenter, retrospective case series to estimate the overall mortality rate following ablation. Data were collected on 32569 patients from 162 clinical centers worldwide. Thirty-two deaths were reported, for a mortality rate of 0.98 per 1000 patients. The most common causes of death were tamponade (n=8), stroke (n=5), atrioesophageal fistula (n=5), and pneumonia (n=2).

One goal of the MACPAF study was to identify adverse events, particularly cerebral thromboembolism, through the use of serial magnetic resonance imaging (MRI) and neuropsychologic testing. While there is some evidence that RFA for patients with AF reduces stroke risk, a clinically significant stroke or TIA attack occurs in 0.1% to 0.8% of patients undergoing catheter ablation, and several case series
have demonstrated peridural brain lesions on diffusion-weighted MRI in up to 18% of patients undergoing catheter ablation of the left atrium. Thus, the MACPAF investigators evaluated patients pre- and postcatheter ablation with brain MRI at 3 Tesla and neurologic and neuropsychological testing. Short-term outcomes from these evaluations were reported by Haeusler et al (2013) and demonstrated that new ischemic lesions occurred in 41% of all patients. However, these brain lesions were not associated with cognitive dysfunction immediately postprocedure. Longer term follow-up was reported by Herm et al (2013). At follow-up MRI 6 months postprocedure, 31.3% of the acute brain lesions had formed a persistent glial scar. Similar to the short-term findings, there was no significant effect of either the ablation procedure or the presence of persistent brain lesions on attention or executive functions, short-term memory, or learning after 6 months.

Section Summary: Complications
Several large, database studies have estimated the adverse event rate from catheter ablation in the clinical care setting. The range of major adverse events in these studies is from 4% to 9%. Deaths have been reported and have occurred at rates less than 1%. Vascular complications at the groin site are the most common adverse events, occurring at rates of up to 5%. Serious cardiovascular adverse events such as tamponade and stroke occur uncommonly, at rates of approximately 1% or lower. There is some evidence that new ischemic lesions are commonly found using MRI after the procedure, but the clinical significance of these defects is unclear.

Summary of Evidence
For individuals who have symptomatic paroxysmal or persistent AF who have failed antiarrhythmic drugs who receive RFA or cryoablation, the evidence includes multiple RCTs and systematic reviews. Relevant outcomes are overall survival, symptoms, morbid events, and quality of life. RCTs comparing RFA with antiarrhythmic medications have reported that freedom from AF is more likely after ablation than after medications. Results of long-term follow-up (5-6 years) after ablation have demonstrated that late recurrences continue in patients who are free of AF at 1 year. However, most patients who are AF-free at 1 year remain AF-free at 5 to 6 years. Multiple RCTs comparing cryoablation with RFA have found that cryoablation is noninferior to RFA for AF control. RFA and cryoablation differ in their adverse event profiles. For example, cryoablation is associated with higher rates of phrenic nerve paralysis but may permit a shorter procedure time. Given current data, it would be reasonable to consider both RFA and cryoablation effective for catheter ablation of AF foci or pulmonary vein isolation, provided there is a discussion about the risks and benefits of each. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have symptomatic AF and congestive heart failure who have failed rate control and antiarrhythmic drugs who receive RFA or cryoablation, the evidence includes a TEC Assessment, supported by RCTs. Relevant outcomes are overall survival, symptoms, morbid events, and quality of life. Based on a multicenter RCT, the TEC Assessment found the evidence sufficient to conclude
that catheter ablation improves outcomes more than the alternative, atrioventricular nodal ablation and pacemaker insertion. Findings from this RCT have been supported by other comparative studies, which have reported improvements in AF. It is reasonable to consider both RFA and cryoablation effective for catheter ablation of AF foci or pulmonary vein isolation, provided that there is a discussion about the risks and benefits of each. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have recurrent symptomatic paroxysmal AF who receive RFA or cryoablation as an initial rhythm-control strategy, the evidence includes RCTs, nonrandomized studies, and systematic reviews. Relevant outcomes are overall survival, symptoms, morbid events, and quality of life. Two RCTs with low risk of bias compared catheter ablation for pulmonary vein isolation with antiarrhythmic medications. One RCT demonstrated reduced rates of AF recurrence, while the other reported reduced cumulative overall AF burden. Together, these results suggest that, when a rhythm-control strategy is desired, catheter ablation is a reasonable alternative to antiarrhythmic drug therapy. While the RCTs comparing ablation with medical therapy were conducted using RFA, it is reasonable to consider both RFA and cryoablation effective for catheter ablation of AF foci or pulmonary vein isolation, provided that there is a discussion about the risks and benefits of each. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Supplemental Information

Clinical Input From Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2015 Input

In response to requests, input was received from 3 physician specialty societies (6 reviewers) and 4 academic medical centers while this policy was under review in 2015. Input focused on the use of ablation as an initial procedure for symptomatic paroxysmal and persistent atrial fibrillation (AF) and the use of cryoablation for AF. There was consensus supporting the use of radiofrequency ablation as an initial treatment for symptomatic paroxysmal AF, and the use of cryoablation as an alternative to radiofrequency ablation as a treatment for AF. For the use of radiofrequency ablation as initial treatment for symptomatic persistent AF, support from clinical input was more mixed.

2011 Input

In response to requests, input was received from 2 physician specialty societies (3 reviewers) and 2 academic medical centers while this policy was under review in
2011. While the input was mixed, there was general agreement with the policy statements. One reviewer commented that use of cryoablation might have a specific role when ablation targets are close to the atrioventricular node.

Practice Guidelines and Position Statements

Heart Rhythm Society et al
An expert consensus document on catheter and surgical catheter ablation for atrial fibrillation (AF) was developed jointly by 7 cardiac specialty societies (Heart Rhythm Society [HRS], European Heart Rhythm Association, European Cardiac Arrhythmia Society, American College of Cardiology, American Heart Association, Asia Pacific Heart Rhythm Society, Society of Thoracic Surgeons) in 2012. A related group of cardiac specialty societies (HRS, European Heart Rhythm Association, European Cardiac Arrhythmia Society, Asia Pacific Heart Rhythm Society, Latin American Society of Cardiac Stimulation and Electrophysiology) updated these guidelines in 2017, suggesting the following recommendations for catheter ablation (see Table 3).

Table 3. Guidelines for Management of Catheter Ablation for AF

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic AF refractory or intolerant to at least 1 class 1 or 3 antiarrhythmic medication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroxysmal: Catheter ablation is recommended</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Persistent: Catheter ablation is reasonable</td>
<td>IIa</td>
<td>B-NR</td>
</tr>
<tr>
<td>Long-standing persistent: Catheter ablation may be considered</td>
<td>IIb</td>
<td>C-LD</td>
</tr>
<tr>
<td>Symptomatic AF prior to initiation of antiarrhythmic drug therapy with a class 1 or 3 antiarrhythmic agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroxysmal: Catheter ablation is reasonable</td>
<td>IIa</td>
<td>B-R</td>
</tr>
<tr>
<td>Persistent: Catheter ablation may be considered</td>
<td>IIa</td>
<td>C-EO</td>
</tr>
<tr>
<td>Long-standing Persistent: Catheter ablation may be considered</td>
<td>IIb</td>
<td>C-EO</td>
</tr>
</tbody>
</table>

AF: atrial fibrillation; COR: class of recommendation; LOE: level of evidence.

American College of Cardiology et al
In 2014, American College of Cardiology, American Heart Association, and HRS issued guidelines for management of patients with AF. The guidelines included the following recommendations for rate control and rhythm control (see Table 4).

Table 4. Guidelines for Rate and Rhythm in Management of AF

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“AV nodal ablation with permanent ventricular pacing is reasonable to control heart rate when pharmacological therapy is inadequate and rhythm control is not achievable.”</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>“AV nodal ablation with permanent ventricular pacing should not be performed to improve rate control without prior attempts to achieve rate control with medications.”</td>
<td>IIIa</td>
<td>C</td>
</tr>
<tr>
<td>Rhythm control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“AF catheter ablation is useful for symptomatic paroxysmal AF refractory or intolerant to at least 1 class I or III antiarrhythmic medication when a rhythm-control strategy is desired.”</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>“Before consideration of AF catheter ablation, assessment of the procedural risks and outcomes relevant to the individual patient is recommended.”</td>
<td>I</td>
<td>C</td>
</tr>
</tbody>
</table>
AF catheter ablation is reasonable for some patients with symptomatic persistent AF refractory or intolerant to at least 1 class I or III antiarrhythmic medication.”

In patients with recurrent symptomatic paroxysmal AF, catheter ablation is a reasonable initial rhythm-control strategy before therapeutic trials of antiarrhythmic drug therapy, after weighing the risks and outcomes of drug and ablation therapy.”

AF catheter ablation may be considered for symptomatic long-standing (>12 months) persistent AF refractory or intolerant to at least 1 class I or III antiarrhythmic medication when a rhythm-control strategy is desired).”

AF catheter ablation may be considered before initiation of antiarrhythmic drug therapy with a class I or III antiarrhythmic medication for symptomatic persistent AF when a rhythm-control strategy is desired.”

AF catheter ablation should not be performed in patients who cannot be treated with anticoagulant therapy during and after the procedure.”

AF catheter ablation to restore sinus rhythm should not be performed with the sole intent of obviating the need for anticoagulation.”

AF: atrial fibrillation; AV: arteriovenous; COR: class of recommendation; LOE: level of evidence.

Although the guidelines did not make a specific recommendation on the use of cryoablation, they did state that “Cryoballoon ablation is an alternative to point-by-point radiofrequency ablation to achieve pulmonary vein isolation.”

European Society of Cardiology et al
The European Society of Cardiology and the European Society for Cardiothoracic Surgery (2016) issued guidelines on the management of AF. The guidelines included the following recommendations on rate and rhythm control and catheter ablation in AF (see Table 5).

Table 5. Guidelines for the Management of AF

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“In patients with permanent AF (i.e., where no attempt to restore sinus rhythm is planned), antiarrhythmic drugs should not routinely be used for rate control.”</td>
<td>IIIa</td>
<td>A</td>
</tr>
<tr>
<td>Rhythm control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Rhythm control therapy is indicated for symptom improvement in patients with AF.”</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>“Catheter ablation of symptomatic paroxysmal AF is recommended to improve AF symptoms in patients who have symptomatic recurrences of AF on antiarrhythmic drug therapy ... and who prefer further rhythm control therapy, when performed by an electrophysiologist who has received appropriate training and is performing the procedure in an experienced centre.”</td>
<td>I</td>
<td>A</td>
</tr>
</tbody>
</table>

AF: atrial fibrillation; COR: class of recommendation; LOE: level of evidence.

U.S. Preventive Services Task Force Recommendations
Not applicable.
Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 6.

Table 6. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00911508a</td>
<td>Catheter Ablation vs Anti-arrhythmic Drug Therapy for Atrial Fibrillation Trial (CABANA)</td>
<td>2204</td>
<td>Jun 2018</td>
</tr>
<tr>
<td>NCT02274857a</td>
<td>Randomized Evaluation of Atrial Fibrillation Treatment With Focal Impulse and Rotor Modulation Guided Procedures (REAFFIRM)</td>
<td>350</td>
<td>Oct 2018</td>
</tr>
<tr>
<td>NCT02150902</td>
<td>Augmented Wide Area Circumferential Catheter Ablation for Reduction of Atrial Fibrillation Recurrence (AWARE)</td>
<td>342</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>NCT03365700</td>
<td>Cryoballoon Versus Conventional Radiofrequency Ablation for Persistent Atrial Fibrillation With AF Duration < 2 Years: the IRON-ICE Trial</td>
<td>303</td>
<td>Mar 2019</td>
</tr>
<tr>
<td>NCT01420393</td>
<td>A Randomized Ablation-based Atrial Fibrillation Rhythm Control Versus Rate Control Trial in Patients With Heart Failure and High Burden Atrial Fibrillation</td>
<td>600</td>
<td>Sep 2019</td>
</tr>
<tr>
<td>NCT03295422</td>
<td>Investigator Initiated Randomized Controlled Trial Comparing Two Radiofrequency Ablation Strategies in Patients With Persistent Atrial Fibrillation</td>
<td>200</td>
<td>Oct 2019</td>
</tr>
<tr>
<td>NCT02106663</td>
<td>Evaluating the Efficacy of Circumferential Pulmonary Vein Ablation (CPVA) Versus Segmental Pulmonary Vein Isolation (SPVI) in Paroxysmal Atrial Fibrillation</td>
<td>100</td>
<td>May 2020</td>
</tr>
<tr>
<td>NCT03387982</td>
<td>Post Procedural Pain Assessment in Patients Undergoing Balloon Cryotherapy Compared to Radiofrequency Ablation (RFA) for Dysplastic Barrett's: A Prospective Study</td>
<td>84</td>
<td>Oct 2022</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01687166a</td>
<td>Clinical Evaluation of the Blazer Open-Irrigated Ablation Catheter for the Treatment of Paroxysmal Atrial Fibrillation (ZERO-AF)</td>
<td>298</td>
<td>Oct 2016 (completed)</td>
</tr>
<tr>
<td>NCT01925885</td>
<td>Focal Impulse and Rotor Modulation Ablation Trial for Treatment of Paroxysmal Atrial Fibrillation (FIRMAT-PAF)</td>
<td>1</td>
<td>Dec 2018 (terminated)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

a Denotes industry-sponsored or cosponsored trial.

References

76. Aryana A, Singh SM, Kowalski M, et al. Acute and long-term outcomes of catheter ablation of atrial fibrillation using the second-generation cryoballoon versus open-irrigated radiofrequency:

102. Calkins H, Kuck KH, Cappato R, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm. Apr 2012;9(4):632-696 e621. PMID 22386883

Billing Coding/Physician Documentation Information

93655 Intracardiac catheter ablation of a discrete mechanism of arrhythmia which is distinct from the primary ablated mechanism, including repeat diagnostic maneuvers, to treat a spontaneous or induced arrhythmia (List separately in addition to code for primary procedure)

93656 Comprehensive electrophysiologic evaluation including transseptal catheterizations, insertion and repositioning of multiple electrode catheters with induction or attempted induction of an arrhythmia with atrial recording and pacing, when possible, right ventricular pacing and recording, His bundle recording with intracardiac catheter ablation of
arrhythmogenic focus, with treatment of atrial fibrillation by ablation by pulmonary vein isolation

93657 Additional linear or focal intracardiac catheter ablation of the left or right atrium for treatment of atrial fibrillation remaining after completion of pulmonary vein isolation (List separately in addition to code for primary procedure)

93799 Unlisted cardiovascular service or procedure

ICD-10 Codes

I48.0 Atrial fibrillation
I48.3 Typical atrial flutter
I50.20- I50.43 Congestive heart failure code range
I50.9 Heart failure unspecified/Biventricular (heart) failure NOS

This new combination code is not to be used with any of the following CPT codes: 93279-93284, 93286- 93289, 93462, 93600, 93602, 93603, 93610, 93612, 93618, 93619, 93620, 93621, 93653, or 93654.

Additional Policy Key Words
Pulmonary Vein Isolation

Policy Implementation/Update Information

5/1/08 New policy; considered investigational.
1/8/2009 Interim update. Policy revised to include medically necessary statements effective 1/8/2009. Title changed from Pulmonary Vein Isolation as a Treatment of Atrial Fibrillation to Catheter Ablation of the Pulmonary Veins as Treatment for Atrial Fibrillation.
5/1/09 Policy statement revised to include medically necessary and investigational indications for a CTA related to catheter ablation of the pulmonary veins. The “and” between the 2 bullets in the policy statement will be changed “or.”
5/1/10 Specific information added to Considerations section regarding repeat procedures. Policy statement added that repeat procedures may be considered medically necessary in specific situations.
5/1/11 Policy statement regarding radiofrequency ablation unchanged; new statement regarding cryoablation as investigational added. The term “radiofrequency” is removed from the policy title; policy renamed.
5/1/12 No policy statement changes.
5/1/13 No policy statement changes.
5/1/14 Policy title changed from “Catheter Ablation of the Pulmonary Veins as Treatment for Atrial Fibrillation” to “Catheter Ablation as Treatment for Atrial Fibrillation.” Removed "in the pulmonary veins" in policy statement. Policy statements regarding the use of CTA removed from this policy.
5/1/15 No policy statement changes.
7/1/15 No policy statement changes.
<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/1/15</td>
<td>The policy statements were changed to indicate that cryoablation may be medically necessary as an alternative to radiofrequency ablation and that ablation may be considered medically necessary as first line treatment for paroxysmal atrial fibrillation. Reworded Investigational statement for consistency.</td>
</tr>
<tr>
<td>8/1/16</td>
<td>Policy statement for ablation as first-line therapy for paroxysmal atrial fibrillation clarified to state that the atrial fibrillation should be recurrent.</td>
</tr>
<tr>
<td>8/1/17</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>8/1/18</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>8/1/19</td>
<td>No policy statement changes.</td>
</tr>
</tbody>
</table>

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.